Selecting the optimal intensity measure (IM) is essential for accurately assessing the seismic performance of the submarine shield tunnels in the layered liquefiable seabed. However, current research relies on simplistic ranking or filtering methods that neglect the different contributions of each evaluation criterion on IM's overall performance. To address this, this study begins by developing a numerical simulation method for nonlinear dynamic analysis, considering joint deformation, ocean environmental loads, and soil liquefaction, which is validated by experimental and theoretical methods. Subsequently, a fuzzy multiple criteria decision-making (FMCDM) method based on fuzzy probabilistic seismic demand models (FPSDM) is proposed, which integrates the fuzzy analytical hierarchical process (FAHP) for calculating weights and the fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) for ranking IM alternatives. Finally, tunnel damage is classified into four states employing joint opening as the index for measuring damage, then the seismic fragility analysis is conducted. The results indicate that the optimal IM of a submarine shield tunnel situated in layered liquefiable seabed is sustained maximum velocity (SMV). Furthermore, the comparison between the fragility curves established using SMV and peak ground acceleration (PGA) reveals PGA, a frequently employed IM, notably undervaluing the seismic hazard.
Concrete gravity dams, forming a quarter of the ICOLD database with over 61,000 dams, often surpass 50 years of service, necessitating increased maintenance and safety scrutiny. Given the aging and advancing seismic safety methods, reevaluating their seismic resilience, considering material degradation and concrete heterogeneity, is imperative. This study conducts a comprehensive seismic fragility assessment of the Pine Flat Dam at lifecycle stages of 1, 50 and 100 years, accounting for material degradation due to aging and uncertainties from concrete heterogeneity. It develops a 2D dam-foundation-reservoir model with fluid-structure-soil interaction and material nonlinearity using the concrete damage plasticity model. The assessment includes 55 ground motions, selected via the conditional mean spectrum method, representing five return periods from 475 to 10,000 years. Fragility curves are developed by fitting a lognormal distribution to failure probabilities at varying intensities. These curves are compared using damage indices like crest displacement and stress at the dam's neck and heel. Aging increases failure probability, correlating with age and return period, as shown by the leftward shift of fragility curves, while concrete heterogeneity adds uncertainty. The results emphasize the critical need for ongoing seismic fragility reassessments, accounting for aging, environmental exposure, and seismic demands on dam safety.
Large diameter shield tunnels traversing liquefiable soil-rock strata are highly susceptible to seismic hazards, as earthquake-induced soil liquefaction significantly reduces soil strength and stiffness. Therefore, it is crucial to accurately assess the seismic performance of these tunnels. This study first establishes a numerical model for tunnel seismic response analysis, considering soil liquefaction, segment nonlinearity, and joint deformation. The validity of the model is affirmed through experimental, theoretical, and additional numerical simulations. The probabilistic seismic demand models are established employing the seismic database consisting of 120 ground motion records. Subsequently, a quantitative selection method for the optimal Intensity Measure (IM) based on fuzzy comprehensive evaluation is proposed, identifying Velocity Spectrum Intensity (VSI) as the most suitable among 29 commonly used IMs, and the IMs related to duration exhibit poor performance. The study then categorizes tunnel damage into three states: minor, moderate, and extensive, using joint opening as the damage measure. Finally, seismic fragility analysis is employed to assess seismic performance of tunnel, and fragility curves derived using VSI and Peak Ground Acceleration (PGA) is compared. The results indicate that PGA, a commonly used IM, significantly underestimates the probability of damage to the tunnel, with a maximum underestimation of 22.4%.