共检索到 2

In northern Canada where permafrost is prevalent, a persistent shortage of accessible, affordable, and high-quality housing has been ongoing for decades. The design of foundations in permafrost presents unique engineering challenges due to permafrost soil mechanics and the effects of climate change. There is no specific design code for pile or shallow foundations in northern Canada. Consequently, the design process heavily relies on the experience of Arctic engineers. To clearly document the current practice and provide guidance to engineers or professionals, a comprehensive review of the practice in foundation design in the Arctic would be necessary. The main objective of this paper is to provide an overview of the common foundations in permafrost and the geotechnical considerations adopted for building on frozen soils. This study conducted a review of current practices in deep and shallow foundations used in northern Canada. The review summarized the current methods for estimating key factors, including the adfreeze strength, creep settlement, and frost heave, used in foundation design in permafrost. To understand the geotechnical considerations in foundation design, this study carried out interviews with several engineers or professionals experienced in designing foundations in permafrost; the findings and the interviewees' opinions were summarized. Lastly, in order to demonstrate the design methods obtained from the interviews and review, the paper presents two design examples where screw piles and steel pipe piles were designed to support a residential building in northern Canada, according to the current principles for adfreeze strength, long term creep settlement, and frost heave. The permafrost was assumed to be at -1.5 degrees C, and the design life span was assumed to be 50 years. The design examples suggested that for an axial load of 75 kN, a 12-m-long steel pipe pile or a 7-m-long screw pile would be needed.

期刊论文 2024-03-01 DOI: 10.3390/geotechnics4010015

With the rapid development across major cities, low-capacity screw piles are adopted by builders as a viable economical option in managing risk involving settlement in soft soil deposits. Although the required installation torque and the capacity of a screw pile can be correlated to the soil shearing resistance at the interface of its shaft and helical plates, the correlated ultimate capacity of the pile is specific only to undrained conditions. Therefore, if the water table fluctuates within the embedment length of the pile, the correlated ultimate strength is not valid. This poses a serious design concern in over-consolidated fills. Therefore, due to the uncertainty associated with the compressive capacity of installed screw piles in soft saturated deposits, it is advantageous to perform a static load test to verify the serviceability and ultimate loads. In this study, four static load tests were carried out on screw piles at four different construction sites in the city of Melbourne, to study the load transfer mechanism at various levels of axial loading and subsequent unloading/reloading stages. In one of the sites, the screw pile was equipped with miniature transducers to monitor the generated total stress and pore-water pressure during the installation and post-installation. The results of this study indicated that a static load test can accurately estimate the real bearing capacity of a screw pile which differs significantly from the design geotechnical strength calculated using theoretical equations. It was concluded that in the absence of a pile load test, it is rational to adopt a geotechnical reduction factor of 0.4 and neglect the skin friction capacity of the screw pile to provide a safe foundation design.

期刊论文 2024-02-01 DOI: 10.1007/s40891-023-00519-x ISSN: 2199-9260
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页