共检索到 152

Mesh-free methods, such as the Smooth Particle Hydrodynamics (SPH) method, have recently been successfully developed to model the entire wetting-induced slope collapse process, such as rainfall-induced landslides, from the onset to complete failure. However, the latest SPH developments still lack an advanced unsaturated constitutive model capable of capturing complex soil behaviour responses to wetting. This limitation reduces their ability to provide detailed insights into the failure processes and to correctly capture the complex behaviours of unsaturated soils. This paper addresses this research gap by incorporating an advanced unsaturated constitutive model for clay and sand (CASM-X) into a recently proposed fully coupled seepage flow-deformation SPH framework to simulate a field-scale wetting-induced slope collapse test. The CASM-X model is based on the unified critical state constitutive model for clay and sand (CASM) and incorporates a void-dependent water retention curve and a modified suction-dependent compression index law, enabling the accurate prediction various unsaturated soil behaviours. The integration of the proposed CASM-X model in the fully coupled flow deformation SPH framework enables the successful prediction of a field-scale wetting-induced slope collapse test, providing insights into slope failure mechanisms from initiation to post-failure responses.

期刊论文 2025-10-01 DOI: 10.1016/j.compgeo.2025.107353 ISSN: 0266-352X

Energy piles, which serve the dual functions of load-bearing and geothermal energy exchange, are often modeled with surrounding soil assumed to be either fully saturated or completely dry in existing design and computational methods. These simplifications neglect soil saturation variability, leading to reduced predictive accuracy of the thermomechanical response of energy piles. This study proposes a novel theoretical framework for predicting the thermo-hydro-mechanical (THM) behavior of energy piles in partially saturated soils. The framework incorporates the effects of temperature and hydraulic conditions on the mechanical properties of partially saturated soils and pile-soil interface. A modified cyclic generalized nonlinear softening model and a cyclic hyperbolic model were developed to describe the interface shear stress-displacement relationship at the pile shaft and base, respectively. Governing equations for the load-settlement behavior of energy piles in partially saturated soils were derived using the load transfer method (LTM) and solved numerically using the matrix displacement method. The proposed approach was validated against experimental data from both field and centrifuge tests, demonstrating strong predictive performance. Specifically, the average relative error (ARE) was less than 15% for saturated soils and below 23% for unsaturated soils when evaporation effects were considered. Finally, parametric analyses were conducted to assess the effects of flow rate, groundwater table position, and softening parameters on the THM behavior of energy piles. This framework can offer a valuable tool for predicting THM behavior of energy piles in partially saturated soils, supporting their broader application as a sustainable foundation solution in geotechnical engineering.

期刊论文 2025-09-01 DOI: 10.1016/j.compgeo.2025.107332 ISSN: 0266-352X

This study evaluates dykes stability of bauxite residue storage facility using limit equilibrium (LEM) and finite element methods (FEM), considering diverse construction phases. In LEM, steady state seepage is simulated using piezometric line while factor of safety (FOS) is determined by Morgenstern-Price method using SLOPE/W. In FEM, actual loading rates and time dependent seepage is modelled by coupled stress-pore water pressure analysis in SIGMA/W and dyke stability is assessed by stress analysis in SLOPE/W, referencing SIGMA/W analysis as a baseline model. Both the analysis incorporated suction and volumetric water content functions to determine FOS. FEM predicted pore pressures are validated against in-situ piezometer data. The results highlight that coupled hydro-mechanical analysis offers accurate stability assessment by integrating stress-strain behaviour, pore pressure changes, seepage paths, and dyke displacements with time. It is found that inclusion of unsaturated parameters in Mohr-Coulomb model improved the reliability in FOS predictions.

期刊论文 2025-07-03 DOI: 10.1080/19386362.2025.2499852 ISSN: 1938-6362

The present work introduces an analytical framework based on the limit-equilibrium method for the determination of the local factor of safety (FS) and global factor of safety (FSG), and local displacements along the critical slip surface using the Morgenstern-Price (MP) method of slices. This proposed work computes displacements along the critical slip surface in addition to a single FSG. The unsaturated shear strength models, in conjunction with the soil-water characteristic curve (SWCC), are considered. The MP-based equilibrium equations to determine FSG are utilized as an objective function in the metaheuristic search algorithm of particle swarm optimization to determine the critical center, critical radius, and minimum FSG for unsaturated finite slopes. It is recommended to use a particle size of 75 and conduct 50 iterations for optimal results. The effects of SWCC fitting parameters on the critical slip surface, FSG, point FS, and point displacements are also investigated. Two distinct benchmark slope scenarios with and without negative pore water considerations are utilized in the current study. This approach enables a detailed investigation into the influence of various unsaturated soil parameters, such as af (related to the air-entry value), nf (related to the slope of the SWCC), and mf (related to the residual water content), as well as constitutive model parameters including the linear shear modulus (G) and the fitting parameter (rho). The maximum displacement occurs at the slope's top crest. Under benchmark conditions, the first scenario shows a reduction in point displacement by 3.30%, 1.98%, and 10.23% for SWCC-1, SWCC-2, and SWCC-3, respectively. However, in the second scenario with SWCC-3, the critical slip surface's position changes, affecting local displacements. This results in an increase of 32.72% (i.e., from 21.45 to 28.47 mm) in point displacement at the top when comparing SWCC-3 with no SWCC consideration. The current study advocates that the effect of fitting parameters of the SWCC should be used to better understand the local FS and displacement, because the critical slip surface is contingent on the values of the SWCC. Ignoring SWCC parameters can lead to an underestimation of slope displacement, because they significantly influence the critical slip surface position and displacement magnitude. Their inclusion is essential for accurately assessing slope stability and preventing errors in displacement prediction.

期刊论文 2025-07-01 DOI: 10.1061/IJGNAI.GMENG-11282 ISSN: 1532-3641

The effective stresses in saturated soils are crucial for geotechnical engineering, particularly in the ocean environment, but no current transducers can directly measure both vertical and lateral effective stresses. Thus, a novel effective stress transducer based on fiber Bragg grating (FBG) technology is developed to directly measure three-dimensional (3D) effective stress in saturated soils. The design of the transducer ensures that pore water pressures inside and outside the transducer are balanced, allowing the strain to solely reflect the effective stress sustained by the soil skeleton. Two FBG sensing elements of the 3D effective stress transducer are designed to measure the vertical and lateral effective stresses by sensing the strain in the thin plate and the sensing cylindrical shell through the porous disk, respectively. Experimental results indicate that the transducer accurately captures the evolution of effective stress under complex static loads and precisely tracks cyclic stress variations under cyclic loadings. Compared to traditional transducers, the lateral earth pressure coefficient derived from the measurement data of the new effective stress transducer shows advanced accuracy and stability. Moreover, the FBG-based transducer effectively monitors effective stress changes during the excavation, capturing soil stress variations and enabling precise excavation stability assessments. The novel 3D FBG-based effective stress transducer offers a vital method for directly measuring the vertical and lateral effective stresses of saturated soils.

期刊论文 2025-07-01 DOI: 10.1016/j.oceaneng.2025.121395 ISSN: 0029-8018

To better characterize the intricate coupled thermo-hydro-mechanical dynamic (THMD) response in twodimensional saturated soil and to enrich the research object of Green-Naghdi (G-N) generalized thermoelastic theory, this study innovatively combines the G-N generalized thermoelastic theory and Caputo's fractional order derivative, to obtain the new control equations, and to establish a new fractional order thermoelastic theoretical model. The article is solved by the normal mode analysis (NMA), which can eliminate the integration error and solve the complex fractional order partial differential control equations quickly at the same time. The effects of different boundary conditions of fractional order derivatives, porosity, frequency, and thermal conductivity coefficients on non-dimensional excess pore water pressure, temperature, vertical displacement, and vertical stress are also fully analyzed, and the distribution curves of high precision numerical solutions are given. The results show that the effect of frequency variation on each non-dimensional variable is obvious. The effects of fractional order derivatives, porosity and thermal conductivity coefficients on the non-dimensional variables vary depending on the boundary conditions. The results provide theoretical support for geotechnical and environmental engineering.

期刊论文 2025-07-01 DOI: 10.1016/j.ijheatmasstransfer.2025.126933 ISSN: 0017-9310

The laboratory experiment is an effective tool for the rapid assessment of the unsaturated soil slopes instability induced by extreme weather events. However, traditional experimental methods for unsaturated soils, including the measurement of the soil-water characteristic curve (SWCC), soil hydraulic conductivity function (SHCF), shear strength envelope, etc., are time-consuming. To overcome this limitation, a rapid testing strategy is proposed. In the experimental design, the water saturation level is selected as the control variable instead of the suction level. In the suction measurement, the suction monitoring method is adopted instead of the suction control method, allowing for simultaneous testing of multiple soil samples. The proposed rapid testing strategy is applied to measure the soil hydro-mechanical properties over a wide suction/saturation range. The results demonstrate that: (1) only 3-4 samples and 2-5 days are in need in the measurement of SWCC; (2) 7 days is enough to determine a complete permeability function; (3) only 3 samples and 3-7 days are in need in the measurement of the shear strength envelope; (4) pore size/water distribution measurement technique is fast and recommended as a beneficial supplement to traditional test methods for unsaturated soils. Our findings suggest that by employing these proposed rapid testing methods, the measurement of pivotal properties for unsaturated soils can be accomplished within one week, thus significantly reducing the temporal and financial costs associated with experiments. The findings provide a reliable experimental approach for the rapid risk assessment of geological disasters induced by extreme climatic events.

期刊论文 2025-06-25 DOI: 10.1016/j.enggeo.2025.108106 ISSN: 0013-7952

During pile installation, construction disturbances alter soil mechanical properties near the pile, significantly affecting the dynamic response of the pile. This paper develops a three-dimensional (3D) analytical model to investigate the vertical dynamic response (VDR) of a pile in radially inhomogeneous saturated soil. Firstly, by employing the separation variable method and incorporating the continuity and boundary conditions of the soilpile system, the exact solution of the whole system in the frequency domain was derived. Subsequently, the timedomain velocity response under semi-sinusoidal vertical excitation is obtained using Fourier inverse transform and the convolution theorem. The accuracy and superiority of the proposed solution were validated through comparison with previous analytical solutions. Finally, the developed solution is then used to examine the impact of parameters of saturated soil and pile on the VDR of a pile. The results demonstrate that the proposed saturated model better captures the VDR of a pile in radially inhomogeneous saturated soil compared to the single-phase model. The VDR of a pile is significantly influenced by the pore water, porosity, disturbed degree and range of the saturated soil, as well as the elastic modulus of the pile.

期刊论文 2025-06-15 DOI: 10.1016/j.oceaneng.2025.121097 ISSN: 0029-8018

The majority of existing effective stress-based constitutive models approach thermal effects through the temperature dependency of surface tension and its effects on the soil-water retention curve (SWRC) and effective stress. Experimental tests and theoretical studies, however, suggest that the temperature effect on surface tension alone is not sufficient to properly explain thermal-induced changes in the effective stress and SWRC. This study focuses on the temperature-dependent elastoplastic behavior of low plasticity unsaturated soils by developing a set of constitutive-level relations that incorporate temperature-dependent SWRC and effective stress models. These models account for the effect of temperature on the enthalpy, contact angle, and surface tension. The application of the presented constitutive relations was demonstrated and validated for low plasticity soils, specifically incorporating temperature effects into the hardening modulus, specific volume change, yield stress of the modified Cam-Clay model, and stress-strain relationships. The proposed relationships are incorporated in any effective stress-based constitutive model for modeling temperature dependency of elastoplastic response in low plasticity unsaturated soils. Employing these relationships can enhance the numerical simulation of low plasticity unsaturated soils under thermo-mechanical or other coupled processes involving temperature-dependent conditions.

期刊论文 2025-06-01 DOI: 10.1007/s11440-025-02554-6 ISSN: 1861-1125

Fissured loess slopes along the railway in the Loess Plateau frequently suffer from disintegration disasters under the coupled effects of rainfall and train vibrations, causing soil collapse that covers tracks and severely threatens railway safety. To reveal the disaster mechanisms, this study conducted water-vibration coupled disintegration tests on fissured loess using the self-developed EDS-600 vibration disintegration apparatus, based on the measured dominant vibration frequencies (12-46 Hz) of the Lanzhou-Qinghai Railway. The influence patterns of vibration frequency (f) and fissure type (t) on disintegration rate (S), disintegration velocity (V), and disintegration velocity growth rate (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha_{f - t}$$\end{document}) were systematically investigated, with scanning electron microscopy (SEM) employed to uncover microstructural evolution mechanisms. Results indicate that vibration frequency and fissure type significantly accelerate disintegration: V reaches its maximum at f = 20 Hz, and under the same frequency, V increases with the growth of fissure-water contact area. Under two fissures and f = 20 Hz, V increases by 225% compared to the without vibration and fissures scenario, with the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha_{f - t}$$\end{document} value peaking at 137.23% and the synergistic effect index exceeding the single-factor superposition value by 45.99%. Microscopically, water-vibration coupling disrupts clay mineral cementation, reconstructs pore networks, and forms dominant seepage channels, leading to reduced interparticle bonding strength, heterogeneous water film distribution, and stress concentration, thereby inducing fractal propagation of secondary fissures and shortening moisture absorption and softening stages. Combined with unsaturated soil mechanics theory, the study reveals a cross-scale progressive failure mechanism involving simultaneous degradation of matric suction, cementation force, and macroscopic strength. A theoretical framework integrating vibration energy transfer, seepage migration, and structural damage is established, along with a quantitative relation linking vibration frequency, fissure parameters, and disintegration velocity. This provides multi-scale theoretical support for disaster prevention and control of railway slopes and foundations in loess regions.

期刊论文 2025-05-20 DOI: 10.1038/s41598-025-01391-7 ISSN: 2045-2322
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共152条,16页