We present an analytic expression to represent the lunar surface temperature as a function of Sun-state latitude and local time. The approximation represents neither topographical features nor compositional effects and therefore does not change as a function of selenographic latitude and longitude. The function reproduces the surface temperature measured by Diviner to within +/- 10 K at 72% of grid points for dayside solar zenith angles of 100 degrees. The analytic function is least accurate at the terminator, where there is a strong gradient in the temperature, and the polar regions. Topographic features have a larger effect on the actual temperature near the terminator than at other solar zenith angles. For exospheric modeling the effects of topography on the thermal model can be approximated by using an effective longitude for determining the temperature. This effective longitude is randomly redistributed with 1 sigma of 4.5 degrees. The resulting roughened analytical model well represents the statistical dispersion in the Diviner data and is expected to be generally useful for future models of lunar surface temperature, especially those implemented within exospheric simulations that address questions of volatile transport. (c) 2014 Elsevier Inc. All rights reserved.
The H2O and O-2 exospheres of Jupiter's moon Ganymede are simulated through the application of a 3D Monte Carlo modeling technique that takes into consideration the combined effect on the exosphere generation of the main surface release processes (i.e. sputtering, sublimation and radiolysis) and the surface precipitation of the energetic ions of Jupiter's magnetosphere. In order to model the magnetospheric ion precipitation to Ganymede's surface, we used as an input the electric and magnetic fields from the global MHD model of Ganymede's magnetosphere (Jia, X., Walker, R.J., Kivelson, M.G., Khurana, K.K., Linker, J.A. [2009]. J. Geophys. Res. 114, A09209). The exospheric model described in this paper is based on EGEON, a single-particle Monte Carlo model already applied for a Galilean satellite (Plainaki, C., Milillo, A., Mura, A., Orsini, S., Cassidy, T. [2010]. Icarus 210, 385-395; Plainaki, C., Milillo, A., Mura, A., Orsini, S., Massetti, S., Cassidy, T. [2012]. Icarus 218 (2), 956-966; Plainaki, C., Milillo, A., Mura, A., Orsini, S., Saur [2013]. Planet. Space Sci. 88,42-52); nevertheless, significant modifications have been implemented in the current work in order to include the effect on the exosphere generation of the ion precipitation geometry determined strongly by Ganymede's intrinsic magnetic field (Kivelson, M.G. et al. [1996]. Nature 384, 537-541). The current simulation refers to a specific configuration between Jupiter, Ganymede and the Sun in which the Galilean moon is located close to the center of Jupiter's Plasma Sheet UPS) with its leading hemisphere illuminated. Our results are summarized as follows: (a) at small altitudes above the moon's subsolar point the main contribution to the neutral environment comes from sublimated H2O; (b) plasma precipitation occurs in a region related to the open-closed magnetic field lines boundary and its extent depends on the assumption used to mimic the plasma mirroring in Jupiter's magnetosphere; (c) the spatial distribution of the directly sputtered-H2O molecules exhibits a close correspondence with the plasma precipitation region and extends at high altitudes, being, therefore, well differentiated from the sublimated water; (d) the O-2 exosphere comprises two different regions: the first one is an homogeneous, relatively dense, close to the surface thermal-O-2 region (extending to some 100s of km above the surface) whereas the second one is less homogeneous and consists of more energetic O-2 molecules sputtered directly from the surface after water-dissociation by ions has taken place; the spatial distribution of the energetic surface-released O-2 molecules depends both on the impacting plasma properties and the moon's surface temperature distribution (that determine the actual efficiency of the radiolysis process). (C) 2014 Elsevier Inc. All rights reserved.
Methanol (CH3OH) is one of the primordial volatiles contained within icy solids in the outer solar nebula. This paper investigates the impact chemistry of CH3OH ice through a series of impact experiments. We discuss its fate during the accretion and evolution stages of large icy bodies, and assess the possibility of intact delivery of cometary volatiles to the lunar surface. Our experimental results show that the peak shock pressures for initial and complete dissociation of CH3OH ice are approximately 9 and 28 GPa, respectively. We also found that CO is more abundant than CH4 in the gas-phase products of impact-induced CH3OH dissociation. Our results further show that primordial CH3OH within icy planetesimals could have survived low-velocity impacts during accretion of icy satellites and dwarf planets. These results suggest that CH3OH may have been a source of soluble reducing carbon and that it may have acted as antifreeze in liquid interior oceans of large icy bodies. In contrast, CH3OH acquired by accretion on icy satellites and Ceres would have been dissociated efficiently by subsequent impacts, perhaps during the heavy bombardment period, owing to the expected high impact velocities. For example, if Callisto originally contained CH3OH, cometary impacts during the late heavy bombardment period would have resulted in the formation of a substantial atmosphere (ca. >= 10(-4) bar) composed of CO, H-2, and CH4. To account for the current CO levels in Titan's atmosphere, the CH3OH content in its crust may have been much lower than that typical of comets. Our numerical simulations also indicate that intact delivery of cometary CH3OH to the lunar surface would not have occurred, which suggests that CH3OH found in a persistently-shadowed lunar region probably formed through low-temperature surface chemistry on regolith. (C) 2014 Elsevier Inc. All rights reserved.
Our knowledge about the lunar environment is based on a large volume of ground-based, remote, and in situ observations. These observations have been conducted at different times and sampled different pieces of such a complex system as the surface-bound exosphere of the Moon. Numerical modeling is the tool that can link results of these separate observations into a single picture. Being validated against previous measurements, models can be used for predictions and interpretation of future observations results. In this paper we present a kinetic model of the sodium exosphere of the Moon as well as results of its validation against a set of ground-based and remote observations. The unique characteristic of the model is that it takes the orbital motion of the Moon and the Earth into consideration and simulates both the exosphere as well as the sodium tail self-consistently. The extended computational domain covers the part of the Earth's orbit at new Moon, which allows us to study the effect of Earth's gravity on the lunar sodium tail. The model is fitted to a set of ground-based and remote observations by tuning sodium source rate as well as values of sticking, and accommodation coefficients. The best agreement of the model results with the observations is reached when all sodium atoms returning from the exosphere stick to the surface and the net sodium escape rate is about 5.3 x 10(22) s(-1). (C) 2013 Elsevier Inc. All rights reserved.
The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations measured the average radial velocity of sodium atoms moving down the lunar tail beyond Earth (i.e., near the anti-lunar point) to be similar to 12.5 km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15 degrees x 15 degrees region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights bracketing new Moon in October 2007. The spatial distribution of the sodium atoms is elongated along the ecliptic with the location of the peak intensity drifting 30 degrees east along the ecliptic per night. Preliminary modeling results suggest the spatial and velocity distributions in the sodium exotail are sensitive to the near surface lunar sodium velocity distribution. Future observations of this sort along with detailed modeling offer new opportunities to describe the time history of lunar surface sputtering over several days. (c) 2012 Elsevier Inc. All rights reserved.