共检索到 2

The soil fabric varies significantly depending on the deposition process that forms the grain skeleton. Each deposition method produces a specific type of soil fabric, which can be linked to a particular soil density. When represented as relative density, determined using limit densities from standard index tests, a wide range of relative densities can be observed for different sands produced by the same deposition method. The influence of this variation in relative density, resulting from a single deposition method, on the development of the excess pore water pressure (PWP) should be further investigated. A fast testing of the excess PWP accumulation in sandy soils during undrained cyclic shearing can be easily performed using the newly developed PWP Tester. In the PWP Tester, specimens are prepared through sedimentation in water, which yields a comparable fabric in different sands but significantly different relative densities. Despite these relative density differences, the rate of the excess PWP evolution during undrained shearing is remarkably similar among different sands. This indicates that relative density should not be regarded as a primary factor influencing the development of the excess PWP and that the soil fabric plays equal or even a greater role.

期刊论文 2025-07-01 DOI: 10.1007/s10035-025-01535-6 ISSN: 1434-5021

Despite several parameters having been identified as having an impact on the undrained monotonic response of granular soils, the impact of the overconsolidation ratio (OCR) is still a contentious issue. One of the significant reasons for the inconsistencies in the undrained behavior is the method by which the stresses are applied--specifically, the effective preconsolidation and confining pressures. To address this, two separate series of triaxial compression tests were realized in order to examine and compare the influence of the OCR (OCR = 1, 2, 4, and 8) on the mechanical response of Chlef River (Algeria) sand, considering the way the stress state was applied. During the first series, the OCR was accomplished by consolidating the specimens to an effective preconsolidation pressure (sigma p ' = 100, 200, 400, and 800 kPa) and subsequently unloading them to a constant desired effective confining pressure of 100 kPa. In the second series, all specimens were consolidated to a maximum effective preconsolidation pressure of sigma p ' = 800 kPa (constant effective preconsolidation pressure) and then unloaded to different effective confining pressures (sigma c ' = 800, 400, 200, and 100 kPa), using two different sample preparation techniques--dry funnel pluviation and moist tamping. The test results revealed a suitable increase in the shear strength with an increase in OCR in the first series, with the opposite trend observed in the pore water pressure. For the second series, an increase in the OCR parameter resulted in a minimized shear strength and pore water pressure (although the trend in pore water pressure evolution did not really reflect the behavior of the deviator stress for this series). In addition, certain parameters, such as normalized behaviors, the brittleness index, ratio of excess pore water pressure to deviator stress at the critical state, and flow potential, appear to be reliable predictors for clarifying and, consequently, explaining the studied behaviors.

期刊论文 2024-02-01 DOI: 10.1061/IJGNAI.GMENG-8710 ISSN: 1532-3641
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页