共检索到 3

Activated coke waste (ACW), a byproduct of industrial desulfurization and denitrification, consists of fine particles ( Na+ > Cl-. Isothermal adsorption analysis revealed that Na+ and Cl- adsorption aligned with the Langmuir model, whereas SO42- adsorption adhered to the Freundlich model. Application of SACW (>= 10 g kg(-1)) effectively improved saline-alkali soil properties by lowering pH and salinity, enhancing soil aggregate stability, and promoting nutrient utilization efficiency. Notably, SACW-treated soils supported maize plants with significantly increased height and biomass (13.94% and 159.28% higher, respectively; P <= 0.05) compared to untreated controls. These benefits stemmed from improved nutrient availability and reduced salt stress-induced plasma membrane damage. These findings validate SACW as a sustainable, functional amendment for reclaiming saline-alkali ecosystems and boosting crop productivity.

期刊论文 2025-06-01 DOI: 10.1007/s11270-025-07977-1 ISSN: 0049-6979

Although significant theoretical and technological advancements have been made in the application of concrete in saline soil regions over the past two decades, newly constructed reinforced concrete structures in these areas still face severe issues of corrosion and degradation. This is due to the complex deterioration environment in saline soil regions, characterized by the combined effects of salt corrosion, dry-wet cycles, and freeze-thaw conditions. The reduced service life of concrete structures in this region is closely related to the diffusion and distribution patterns of high-concentration chloride salts and various corrosive ions within the concrete. These patterns affect the content, transformation, and microstructure of corrosion products, ultimately leading to a shorter service life compared to other environments. This paper simulates the saline-alkali soil environment using solutions of different concentrations of chloride sulfates and magnesium salts, studies the diffusion and distribution patterns of chloride ions and sulfate ions in concrete under this environment, and analyzes the mechanism of action in conjunction with changes in microstructure. The experimental system adopts a dry-wet cycle test that can represent the characteristics of the semi-arid continental climate in Western China. The results show that although the content of free chloride ions and total chloride ions entering the concrete in the saline-alkali soil simulation solution is the lowest, the binding capacity of chloride ions is significantly greater than that of sulfate ions and far exceeds that in other environments. Under the action of high-concentration chlorides alone, the content of chloride ions in concrete is the highest, and the binding capacity of chloride ions also increases with the concentration of chlorides. The content of free sulfate ions and total sulfate ions entering the concrete in the saline-alkali soil simulation solution and their binding capacity are higher than in the control solution. Due to the ability of sulfate ions to hinder the diffusion of chloride ions in concrete, magnesium ions play a hindering role in the early stage and an accelerating role in the later stage. This results in concrete corroded by the saline-alkali soil environment, which has a characteristic of low chloride ion content and high sulfate ion content. The ions in the saline-alkali soil solution that cause concrete damage are Cl-, SO42-, and Mg2+. These ions react with the concrete to form Friedel's salt, Aft and AFm phase calcium aluminate, gypsum, Mg-S-H, and Mg(OH)2, among other substances. These corrosion products significantly impact the microstructure of concrete, causing the microstructure of concrete to transition from dense to loose to cracked much earlier than in other environments.

期刊论文 2025-05-16 DOI: 10.1016/j.conbuildmat.2025.141213 ISSN: 0950-0618

The cadmium (Cd) in saline-alkali soil poses a serious threat to the ecological environment and human health. Suaeda salsa, as a hyperaccumulator plant, can remediate Cd in saline-alkali soil, but the efficiency of phytoremediation is low. To improve the remediation effect of Cd pollution in saline-alkali soil, this study for the first time uses the synergy of hydrogel and Suaeda salsa for the remediation of Cd in saline-alkali soil. Hydrogel possesses excellent mechanical properties and outstanding adsorption properties. In addition, the hydrogel increases the content of some nutrient elements in the soil and improves the physicochemical properties of the soil. The water retention capacity of the hydrogel and the improvement of the physicochemical properties of the soil further promote the growth of Suaeda salsa. Meanwhile, both the hydrogel and Suaeda salsa have a positive impact on microorganisms. Our experiment provides a brand-new way for the remediation of Cd pollution in saline-alkali soil and is of great significance for soil health and ecological protection.

期刊论文 2025-01-06 DOI: 10.1021/acsami.4c18057 ISSN: 1944-8244
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页