共检索到 5

Increases in the frequency and intensity of droughts and heat waves are threatening forests around the world. Climate-driven tree dieback and mortality is associated with devastating ecological and societal consequences, including the loss of carbon sequestration, habitat provisioning, and water filtration services. A spatially finegrained understanding of the site characteristics making forests more susceptible to drought is still lacking. Furthermore, the complexity of drought effects on forests, which can be cumulative and delayed, demands investigation of the most appropriate meteorological indicators. To address this research gap, we investigated the drivers of drought-induced forest damage in a particularly drought-affected region of Central Europe using SHapley Additive exPlanations (SHAP) values, an explainable artificial intelligence (XAI) method which allows for the relevance of predictors to be quantified spatially. To develop a reproducible approach that facilitates transferability to other regions, open-source data was used to characterize the meteorological, vegetation, topographical, and soil drivers of tree vulnerability, representing 41 predictors in total. The forest drought response was characterized as a binary variable (damaged or unchanged) at a 30-m resolution based on the Normalized Difference Moisture Index (NDMI) anomaly (%) between a baseline period (2013-2017) and recent years (2018-2022). We revealed critical tipping points beyond which the forest ecosystem shifted towards a damaged state: <81 % tree cover density, <4% of broadleaf trees, and < 24 m canopy height. Our study provides an enhanced understanding of trees' response to drought, which can support forest managers aiming to make forests more climate-resilient, and serves as a prototype for interpretable early-warning systems.

期刊论文 2025-03-01 DOI: 10.1016/j.ecolind.2025.113308 ISSN: 1470-160X

Agricultural drought is a complex natural hazard involving multiple variables and has garnered increasing attention for its severe threat to food security worldwide. In the context of climate change and the increased occurrence of drought events, it is crucial to monitor drought drivers and progression to plan the subsequent efforts in drought prevention, adaptation, and migration. However, previous studies on agricultural drought often focused on precipitation or evapotranspiration, overlooking other potential drivers related to crop drought stress. Additionally, macro-level analyses of drought-driving mechanisms struggle to reveal the underlying contexts of varying drought intensities. Northern Italy is one of the most important agricultural regions in Europe and is also a hotspot affected by extreme climate events in the world. In the summer of 2022, an extreme drought struck Europe once again, causing significant damage to the agricultural regions of Northern Italy. However, no studies to date have revealed the potential impacts and extent of extreme drought on this crucial agricultural area at a regional scale. Therefore, a comprehensive understanding of agricultural drought still requires further clarification and differentiated driver analysis. This study proposed a novel framework to comprehensively monitor agricultural drought with ensemble machine learning by constructing an integrated agriculture drought index (IADI) with remote sensing-related data including meteorology, soil, geomorphology, and vegetation conditions. Additionally, the Shapley Additive Explanation (SHAP) explainable model was applied to reveal the driving mechanism behind the drought event that occurred in northern Italy in the summer of 2022. Results indicated that the proposed explainable ensemble machine learning model with multi-source remote sensing products could effectively depict the evolution of agricultural drought with spatially continuous maps on an 8day scales. The SHAP analysis demonstrated that the extreme and severe agricultural drought in the summer of 2022 was closely related to meteorological indicators especially precipitation and land surface temperature, which contributed 68.88% to the drought. Moreover, the new findings also highlighted that soil properties affected the agricultural drought with a contribution of 28.3%. Specifically, in the case of moderate and slight drought conditions, higher clay and soil organic carbon (SOC) content contribute to mitigating drought effects, while sandy and silty soils have the opposite effect, and the contributions from soil texture and SOC are more significant than precipitation and land surface temperature. The proposed research framework could effectively contribute to improving the methodology in agricultural drought research, potentially bringing more instructive insights for drought prevention and mitigation.

期刊论文 2024-12-01 DOI: 10.1016/j.compag.2024.109572 ISSN: 0168-1699

Accurate evaluation of cumulative strains in marine soils under long-term cyclic loading is essential for the design and safe operation of offshore wind turbines. This study proposes an enhanced machine learning model to predict the cumulative strain in marine soils subjected to cyclic loading. Cumulative strains of marine soils from five offshore wind farms under long-term cyclic loading were tested. Four prediction models for cumulative strains were developed and evaluated based on test results using the Back Propagation Neural Network (BP-NN), Random Forest (RF), Support Vector Regression (SVR), and eXtreme Gradient Boosting (XGBoost) models, each combined with the Particle Swarm Optimization (PSO) algorithm. The prediction model with the highest accuracy was further analyzed using the SHapley Additive exPlanations (SHAP) method. Results show that the RF and XGBoost algorithms have higher prediction accuracy, with R2 values above 0.99, compared to the BP-NN and SVR models. Furthermore, dynamic triaxial test parameters significantly influence the cumulative strain predictions more than the soil properties. This study provides a more efficient method for cumulative strain assessment of marine soils under long-term cyclic loading.

期刊论文 2024-12-01 DOI: 10.1016/j.apor.2024.104265 ISSN: 0141-1187

The utilization of cement has been found to have negative environmental impacts. In order to reduce the quantity of cement used and improve the mechanical properties of solid waste-cement-stabilized cohesive soil, the incorporation of solid waste as additives has been investigated. Unconfined compressive strength is a crucial parameter in geotechnical engineering. However, existing empirical formulas have limited accuracy and applicability when it comes to the unconfined compressive strength of solid waste-cement-stabilized cohesive soil. The machine learning model can be used to provide accurate and comprehensive predictions by considering the nonlinear relationships between independent and dependent variables. This study aims to propose a machine learning model tuned by optimization algorithms with high generalization performance in accurately predicting the unconfined compressive strength. Firstly, a database containing 474 specimens was developed. Secondly, eight machine learning models were established, composed five single models and three hybrid models, to train and test the database. Six performance indicators were employed to evaluate the generalization ability of these models. Finally, the optimal model was selected for analysis of the importance of the feature variables using shapley additive explanations, which were compared with those of the existing empirical model. The research findings indicated that, the extreme gradient boosting model tuned with tree-structured parzen estimators exhibited the highest predictive accuracy and generalization ability. The curing age, cement content, plastic limit, and water content were identified as the most critical factors influencing the unconfined compressive strength. Among the chemical components in solid waste, the aluminum oxide content and silicon dioxide content were found to significantly influence the unconfined compressive strength, while the impact of calcium oxide content was relatively minor. Furthermore, the optimal solid waste content was found to be around 10 %. This study made a significant contribution to the effective utilization of waste resources in the context of sustainable construction practices.

期刊论文 2024-10-25 DOI: 10.1016/j.conbuildmat.2024.138242 ISSN: 0950-0618

Despite the widespread application of data-centric techniques in Geotechnical Engineering, there is a rising need for building trust in the artificial intelligence (AI)-driven safety assessment of road embankments due to its so-called black-boxnature. In addition, from the lens of limit equilibrium approaches, e.g., Bishop, Fellenius, Janbu and Morgenstern-Price, and finite element method, it is essential to carefully examine the interplay of both topological and physical/mechanical properties during the safety factor (FoS) predictions. First, aside from having conventional geotechnical inputs for soil in core and foundation and the height of embankments, this paper codifies geometric features innovatively. The number of slope types with different ratios including 1:1, 1.5:1 and 2:1 as well as the number of berms is introduced. Second, a pool of 19 machine learning (ML) techniques is effortlessly trained on the dataset using an automated ML (AutoML) pipeline to identify the most optimized ML algorithm. Finally, to achieve post-hoc interpretability for the internal mechanism of the input- output relationship unbiasedly, a game-theory-based explainable AI (XAI) method called Shapley additive explanations (SHAP) values is applied. SHAP-aided importance analysis provides human-interpretable insights and indicates height, California bearing ratio, slope type 2:1 and cohesion as the most influential parameters. Exclusively, analyzing hazardous embankments by classifying main and joint contributors exhibits a complex and highly variable influence on the FoS. This paper harnesses the power of XAI tools to enhance reliability and transparency for the rapid FoS prediction of slopes. It targets geotechnical researchers, practitioners, decision-makers, and the general public for the first time.

期刊论文 2024-10-01 DOI: 10.1016/j.engappai.2024.108854 ISSN: 0952-1976
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页