共检索到 2

The availability of quality materials for construction has been an issue in some regions. This scarcity obliged using marginal materials reinforced with geosynthetic materials as one of the quests for sustainability in the pavement industry. In this study, an attempt was made to stabilize the marginal materials by incorporating geosynthetics. The different geosynthetics used in the study are geogrid, geocell, double geogrid, and geocell + geogrid. A series of unreinforced (UR) and geosynthetic reinforced (GR) pavement prototypes were constructed in the laboratory with landslide debris as base material underlain by black cotton soil subgrade. Large-scale cyclic plate load (CPL) tests were performed on test prototypes constructed in the laboratory under cyclic loading following the trapezoidal loading pattern with 0.77 Hz frequency. The efficacy of geosynthetic reinforcement was quantified concerning permanent deformation (PD), resilient deformation (RD), Rut depth reduction (RDR), Traffic improvement ratio (TIR), and reduction in vertical stresses transmitted to the subgrade and reduction in base layer thickness. The test results indicate that the GR significantly reduced the rut depth and improved the traffic capacity. In addition, over all types of GRs, the combination of geogrid and geocell outperformed in terms of permanent deformation and rut depth reduction.

期刊论文 2024-12-31 DOI: 10.1080/10298436.2024.2318605 ISSN: 1029-8436

This study conducted large-scale cyclic loading experiments on the base layer overlying a weak subgrade soil. Geotextile and cement-treated geotextile were utilized to reinforce the base material and to separate the interface of soils between the base layer and the subgrade. The results obtained from the repeated loading tests using geotextile and cement-treated geotextile were analyzed and evaluated in terms of some benchmark indicators such as total deformation, permanent deformation, elastic deformation, percentage of elastic deformation, traffic benefit ratio (TBR), elastic modulus (MR), improvement factor (If), and rut depth reduction ratio (RDR). Based on the experimental results, the use of cement-treated geotextile as a base layer reinforcement element or as an interfacial separation element demonstrated better performance compared to the use of geotextile. Utilization of a cement-treated geotextile as both reinforcement and separation element resulted in an RDR value of 49.26 % after 5000 cycles. Additionally, using a cement-treated geotextile for both reinforcement and separation increased the TBR value to 14.62 at 27 mm deformation, decreased the permanent deformation value from 53.67 mm to 27.23 mm, and approached approximately 2 improvement factor values, compared to using the geotextile solely for separation.

期刊论文 2024-09-01 DOI: 10.1016/j.trgeo.2024.101333 ISSN: 2214-3912
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页