在列表中检索

共检索到 1

This study proposes the use of soil bags filled with a rubber sand mixture (SFRSM) to address the issue of weak stability associated with rubber-sand layers for seismic isolation. To evaluate the dynamic characteristics of the SFRSM, large-scale cyclic simple shear tests were conducted to investigate the effects of rubber content, vertical pressure, shear displacement amplitude, fill percentage, and laying scheme. Furthermore, shaking table tests were carried out to evaluate the impact of vibration intensity and frequency on the seismic isolation of SFRSM layers. The results indicate that (1) Compared to the rubber-sand layer, the SFRSM exhibits a lower shear modulus and higher damping, indicating its potential for greater seismic isolation and energy dissipation. (2) The dynamic characteristics of the SFRSM were significantly influenced by the fill percentage and laying scheme, suggesting that an effective isolator capable of withstanding various external conditions could be developed. (3) The isolating effect of the SFRSM layer is attributed to its ability to dampen high-frequency vibration components effectively. Additionally, the threshold frequency required to trigger attenuation decreases with an increasing number of SFRSM layers. In summary, these experimental results provide evidence that the proposed innovative strategy enhances the strength and vertical stiffness of the original rubber-sand layer, making it well-suited for seismic design applications in low-rise buildings in less-developed regions.

期刊论文 2025-04-07 DOI: 10.1680/jgein.23.00158 ISSN: 1072-6349
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页