共检索到 2

Soil moisture detection research, which influences crop growth, land use, and soil erosion, is receiving significant attention. This study proposes a nondestructive, integrated ultrawideband (UWB)-based framework for soil moisture measurement and prediction. The method utilizes a UWB-loaded unmanned aerial vehicle (UAV) to gather radar echo data, circumventing soil damage issues inherent in current research and equipment. We first employ time-frequency analysis methods to convert the echo signals into 2-D spectrograms, constructing datasets labeled with soil moisture. Then, a trained neural network is used to predict the soil moisture at single point. Additionally, a novel interpolation method is proposed to enhance prediction accuracy (ACC) for the ridge-furrow structure of farmland. The experimental results demonstrate that the proposed algorithm achieves a soil moisture measurement ACC of 98% in both vegetated and nonvegetated conditions, indicating strong robustness. In terms of moisture distribution prediction, the mean squared error (mse) of soil moisture spatial distribution prediction is reduced by 42% compared to traditional methods. Therefore, this system provides technical support for efficient, large-scale, and nondestructive soil information collection.

期刊论文 2025-01-01 DOI: 10.1109/TGRS.2025.3554962 ISSN: 0196-2892

Foundation elements with rough (textured) surfaces mobilize larger interface shear resistance than ones with conventional smooth or random rough surfaces when sheared against soils under monotonic loading. The overall performance of foundation elements such as piles supporting offshore wind turbines, suction caissons supporting tidal energy converters, soil nails, and soil anchors installed in cohesive soils could be enhanced through utilizing rough (textured) surfaces to resist applied static and/or cyclic loading. This paper describes the shear behavior of smooth and rough (textured) surfaces in kaolinite clay and kaolinite clay-sand mixture soils under static and cyclic axial loading. The experimental investigation presented herein consists of a series of interface shear tests performed on 3D printed rough (textured) surfaces and a 3D printed smooth reference surface utilizing the Cyclic Interface Shear Test system. The paper includes a description of the interface testing system components, cohesive soil specimens' preparation procedure, smooth and rough (textured) surfaces details, testing procedure, and results of static and cyclic tests. Test results indicate that kaolinite clay-sand mixture soil mobilized larger static and post-cyclic interface shear resistance and volume contraction relative to kaolinite clay soil when sheared against the smooth reference surface. When tested against rough (textured) surfaces with variable asperity height, larger shear resistance was mobilized and larger soil dilation greater than that mobilized by the reference untextured surface in both soils. The results also indicate rough (textured) surfaces exhibited a prevalent frictional anisotropy increases with asperity angle and height in cohesive soils, the surfaces mobilized larger shear resistance and volume change in one direction (i.e., against the asperity right-angled side) than the other direction (i.e., along the asperity inclined side).

期刊论文 2024-12-01 DOI: 10.1016/j.rineng.2024.103278 ISSN: 2590-1230
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页