With the frequent occurrence of natural disasters, the problem of dam failure with low probability and high risk has gradually attracted people's attention. This paper uses flume model tests to systematically analyze the overtopping failure mechanisms of concrete face rockfill dam (CFRD) and identify its failure modes. The tests reveal that the longitudinal erosion of the CFRD breach progress through stages of soil erosion, panel failures, and water flow stabilization. Meanwhile, the cross- breach process involves the evolution of breach size in rockfill materials, including traceable erosion, lateral broadening, and breach morphology stabilization. The fracture characteristics of the water-blocking panel are primarily evident in the flow-time curve. By analyzing the breach morphology evolution processes in longitudinal and cross sections, the flowtime curve can be subdivided into stages of burst flow formation, breach expansion with flow increase, rapid increase of breach flow discharge due to panel failures, and stabilization of breach flow and size. The primary damage process of the CFRD occurs in a cyclical stage of breach expansion, flow increase, panel failure, and rapid discharge. The rigid face plate and granular body structure contribute to partial dam failure, showing a tendency for gradual expansion of the breach. The longitudinal illustrates dam failure resulting from panel fracture and rockfill erosion interaction, while downstream slopes exhibit failure due to lateral intrusion of rockfill and cyclic instability. These research results can serve as a reference for constructing a concrete CFRD failure prediction model and conducting disaster risk assessments.
During the operational phase of pumped storage hydropower stations, rockfill materials within the dam experience cyclic loading and unloading due to water level fluctuations. This cyclic behavior can result in the accumulation of irreversible deformation, posing a substantial threat to dam safety. However, there is an absence of a constitutive model capable of accurately capturing the low-frequency multi-cycle hysteresis behavior of rockfill materials due to the constraints of conventional laboratory test methods. In this study, we employed the combined finite and discrete element method (FDEM) to investigate the mechanical characteristics of rockfill materials and develop an improved constitutive model capable of effectively capturing their hysteretic behavior. The results demonstrate the FDEM accurately reproduces the mechanical behavior of rockfill material under shear and cyclic loading and unloading conditions. The hysteresis loop exhibits a discernible densification trend with increasing cycles. And the variations in elastic modulus and strain primarily occur within the initial five cycles. The plastic strain increment exhibits a strong positive correlation with stress level, while its relationship with confining pressure is comparatively less pronounced. The proposed constitutive model successfully captures the complex low-frequency multi-cycle hysteresis characteristics of rockfill material with few parameters, showing substantial potential for practical applications.
Under the high stress of a 300-m dam, the particle breakage patterns of rockfill material may differ from those under low-stress levels. The existing studies on the particle breakage of rockfill material under ultra-high dams are relatively rare. In this study, by performing a series of large-scale triaxial shear tests under different relative densities and confining pressures, the stress-strain relationships and particle breakage characteristics of a sandstone rockfill material were investigated. The development of four particle breakage indexes before and after the triaxial test, the evolution of the gradation curves, and the applicability of three gradation formulas to the data of this study were analyzed. Based on the distribution of one relative breakage index, its relationship with strength and compressibility was established. Finally, three failure modes for the sandstone rockfill material after the triaxial test were given. And the relationships among failure modes and confining pressure, and particle size were discussed.
The mechanical properties of rockfill materials are not only influenced by microscopic factors such as particle morphology and gradation, but also closely related to different loading stress paths. It is of great significance to study the microscopic mechanical properties of rockfill materials under different stress paths for revealing the macroscopic mechanical properties as well as the microscopic deformation and failure mechanisms of rockfill materials. In this paper, based on the results of triaxial tests, a series of numerical triaxial simulation tests under different stress paths were carried out using the discrete element particle flow method, and the deformation, strength change rules, and fine structure evolution mechanism under three stress paths were explored. The results demonstrated that there were significant differences in the effects of stress paths on the stress-strain and strain-volume change characteristics of the rockfill materials. Stress paths exhibited little effect on the strength characteristics. The anisotropy of strong contact number and strong contact force was the microscopic source of macroscopic strength. The contact situation between the particles was the main microscopic factor affecting the macroscopic deformation. The intrinsic mechanism of macroscopic deformation properties could be revealed by the average coordination number and porosity. The stress path affected the growth rate of the number of bond failures and the total number of failures. The relationship between macroscopic mechanical properties and microstructural evolution under different stress paths was also discussed. The findings can provide meaningful insights into the deformation control and stability analysis of rockfill engineering.