在列表中检索

共检索到 1

To understand the shear characteristics of particles more comprehensively, the shear behavior of rigid particles, deformable particles, and breakable particles is investigated in this work. The rigid particles are modeled by the spheropolygon-based DEM. The deformable spheropolygon-based discrete element method is employed to study the shear behavior of deformable and breakable particles. Firstly, the influence of different circularization radii on rigid particles is studied. It is found that with a larger circularization radius, the edges and corners of the particles become less pronounced, and the particle shape approaches a circle, resulting in a smaller shear force. Secondly, the shear characteristics of breakable particles are examined. The experimental results indicate that particle fragmentation primarily occurs during the early stages of the shear process. Additionally, under high tensile strength, the impact of particle fragmentation on the mechanical properties of granular materials can be disregarded. Lastly, a comparison of shear forces is conducted among rigid, deformable, and brittle particles. The results show that particles assumed to be rigid generate the highest shear forces. On the contrary, deformable particles undergo deformation during shear, while brittle particles experience breakage, leading to a relatively loose packing and consequently less shear force.

期刊论文 2024-12-01 DOI: 10.1007/s00419-024-02702-6 ISSN: 0939-1533
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页