Drought stress significantly inhibits the growth of Astragalus mongholicus, leading to reduced biomass, decreased photosynthetic efficiency, and exacerbated oxidative damage. In our study, the accumulation of saponins and flavonoids in Astragalus roots markedly increased under moderate drought stress. These secondary metabolites further reshaped the rhizosphere microbial community structure, significantly increasing its diversity and interaction network complexity. Notably, drought stress enriched beneficial bacterial genera such as Rhizobium and Pseudomonas in the rhizosphere soil. Combined with the isolation of culturable microorganisms and the cooccurrence network of the rhizosphere bacterial community, we constructed a 13-strain synthetic community (SynCom) and simplified it to 7 strains. Compared with the noninoculated control, under moderate drought stress, inoculation with the simplified SynCom significantly increased plant growth, increasing the aboveground fresh weight by 50.10 %, dry weight by 55.29 %, and underground fresh weight by 76.40 %. Similarly, plants treated with the synthetic community presented significant increases in aboveground fresh weight and dry weight compared with those of the noninoculated control, with increases of 46.98 % and 61.54 %, respectively. Moreover, inoculation with the simplified community significantly reduced the content of malondialdehyde (MDA) and improved the catalase (CAT) and peroxidase (POD) activities and leaf photosynthetic parameters (Fv/ Fm and Y(II)) of Astragalus. Our findings provide new insight into improving the yield and quality of Astragalus and highlight the potential of synthetic rhizosphere microbial communities for assisting plants in coping with abiotic stress.
The damage caused by soil-borne diseases in Cunninghamia lanceolata (Lamb.) Hook (Cupressaceae), commonly called the Chinese fir, has become increasingly severe in China in recent years. Due to the strong seasonal dependence of the occurrence and severity of these diseases, the ecological processes influencing changes in the composition and function of the plant microbiome during different seasons of pathogen infection have been rarely studied. This study compared the seasonal variations in soil physicochemical properties between the rhizosphere soils of healthy and diseased C. lanceolata in major production areas in China. It further explored the effects of root rot on the composition, structure, and ecological functions of rhizosphere microorganisms. The results demonstrated that seasonal variations significantly influenced the physicochemical properties and microbial composition of the rhizosphere soil in C. lanceolata affected by root rot. Microbiome analysis further confirmed that, within the same season, healthy C. lanceolata contained a greater abundance of ecologically beneficial microbial taxa in the rhizosphere soil compared to diseased trees. These microorganisms may function as bioprotectants. This study enhances our understanding of the structural and functional changes in the rhizosphere soil microbiome associated with soil-borne diseases and provides potential ecological management strategies to improve plant resistance to root rot.
Drought, a major abiotic stress, adversely affects the growth, development, and nutrient absorption of legume plants, leading to yield reduction. This study investigated the combined effects of silicon (Si) and the actinobacterial strain Streptomyces chartreusis on water-stress resistance in soybean (Glycine L.). Our experiments, conducted under simulated water deficit conditions, revealed that the combined application of Si and S. chartreusis boosted the morphological, physiological, and biochemical traits of the soybean plants. Si treatment led to higher levels of nitrogen, phosphorus, potassium, and silicon while reducing malondialdehyde (MDA) concentrations (25 %), an indicator of oxidative stress. The use of silicate and S. chartreusis boosted the activity of antioxidant enzymes, such as superoxide dismutase (35 %), catalase (61 %), and peroxidase (58 %), reducing oxidative damage and improving water relations, as shown by the increased relative water content (33 %) and membrane stability index (35 %). The plants treated with both silicate and S. chartreusis exhibited the highest levels of chlorophyll a and b, suggesting improved photosynthetic efficiency. These results highlight the potential of combining Si with beneficial microbial inoculants in sustainable agriculture to enhance soybean resilience to water stress. However, field studies are required to confirm the efficacy of these treatments in agricultural environments.
With an increase in global demand for food without unwanted environmental issues stresses a need for sustainable agriculture. Up till now, conventional agricultural methods focused on obtaining great crop yields from the use of chemical fertilizers but overlooked the hazardous concerns that are leading to soil depletion. These chemical fertilizers adversely affect soil structure, decrease fertility, damage soil flora, and lead to soil erosion. In this scenario, understanding the natural mechanisms of plant-microbe interactions in the rhizospheric environment can potentially lead a way towards eco-friendly agriculture, as the plant associating bacteria prompting phytostimulation can be the key players in unlocking sustainable alternative for conventional fertilizers. Plant growth-promoting bacteria (PGPB) are a distinct class of soil microorganisms that promote plant growth and yields by enhancing nutrient delivery and shielding the plants against diseases. N fixing bacteria such as Rhizobium and Azotobacter, for instance, fix atmospheric nitrogen into a usable form for plants, Pseudomonas and Bacillus induce root and shoot elongation by synthesizing phytohormones. These bacteria also provide protection to plants by synthesizing antimicrobial substances and increasing the competitive nature of the rhizosphere. Bacteria like Azospirillum, Enterobacter, and Flavobacterium also stimulate plant growth by producing phytohormones under specific envirnmental conditions. Utilization of PGPB as bio-stimulants in agriculture is a promising method for sustainable agriculture dependence on chemical fertilizers and maintaining soil health. This approach would play an important role in sustaining a balanced ecosystem along with increasing agricultural productivity.
Understanding the spatiotemporal dynamics of microbial communities is essential for predicting their ecological roles and interactions with host plants. In a recent study, Wei and colleagues (Microbiol Spectr 13:e02097-24, 2024) investigated fungal diversity across multiple plant and soil compartments in rubber trees over two seasons and two geographically distinct regions in China. Their findings revealed that alpha diversity was primarily influenced by seasonal changes and physicochemical factors, while beta diversity exhibited a strong geographical pattern, shaped by leaf phosphorus and soil available potassium. These results highlight the role of environmental drivers in shaping within-community diversity, while other factors contribute to the differences between fungal communities across the soil-plant continuum. By distinguishing the effects of temporal and spatial factors, this study provides detailed insights into plant-associated microbiomes and emphasizes the need for further research on the functional implications of microbial diversity in the context of changing environmental and agricultural conditions.
The growth of different grafted guava was different as affected by grafting on different rootstock varieties, which also influenced the damage degree of Spodoptera litura larvae. The co-regulation of the pest gut by rhizosphere microorganisms and root exudates may contribute to this differential damage. In this study, the microorganisms of soil, plants, S. litura larvae and root exudates of guava grafted on different rootstock varieties were analysed and compared. The activities of superoxide dismutase, peroxidase and catalase in the midgut of S. litura larvae feeding on heterograft leaves of guava (where rootstock and scion are of the different variety) were significantly higher than those in the midgut of S. litura larvae feeding on homograft leaves of guava (where rootstock and scion are of the same variety), and glutathione s-transferase activity showed an opposite result. Enterococcus spp. and Escherichia spp. were the two bacterial genera with the greatest difference in abundance in the midgut of S. litura larvae and exhibited a negative correlation with each other. The root system of guava influenced the root structure, soil nutrients and the population structure and diversity of rhizosphere microorganisms by regulating the type and amount of root exudates. Root exudates also influenced the physiological and biochemical status of S. litura larvae by regulating the rhizosphere microorganisms driving the tritrophic interaction of plant-microbes-insects. Based on our results and the observed differences in pest occurrence among different grafted plants, improving varieties through grafting may become an effective strategy to reduce the impact of insect pests on guava.
Background: Fritillaria taipaiensis P.Y. Li is commonly used in Chinese medicine for its cough-suppressing and expectorant properties. Due to over-excavation and ecological damage, the wild resources of F. taipaiensis have suffered serious damage. Understanding and improving the inter-root soil environment plays an important role in improving the success rate of artificial cultivation of F. taipaiensis and the quality of medicinal herbs. Methods: This study employed a pot experiment to inoculate three strains of phosphorus-solubilizing fungi from the Aspergillus genus for a total of seven treatment groups, with sterile physiological saline serving as the control group (CK). The research aims to examine the impact of inoculating phosphorus-solubilizing fungi on the biomass of F. taipaiensis, alkaloid concentration in its bulbs, and characteristics of the rhizosphere soil environment. The specific inoculation treatments included: Aspergillus tubingensis (Z1); Aspergillus niger (Z2); Aspergillus fumigatus (Z3); a combination of A. tubingensis and A. niger (Z12); a combination of A. niger and A. fumigatus (Z13); a combination of A. tubingensis and A. fumigatus (Z23); and a combination of all three fungi, A. tubingensis, A. niger, and A. fumigatus (Z123). Results: Inoculation with phosphorus-soluble fungi significantly increased the biomass of F. taipaiensis, and the largest increase was in the Z123 group, which was 62.85% higher than that of the CK group. Total alkaloid content increased the most (0.11%) in the Z3 group, which was an 83.87% increase compared with the CK group. The total content of monomer alkaloids in the Z3, Z13, and Z123 groups increased by 10.53%, 12.48%, and 9.61%, respectively, compared with those in the CK group, indicating that the quality of F. taipaiensis could be significantly improved after applying phosphorus-solubilizing fungi. The soil environment improved after inoculation with different phosphorus-solubilizing fungi. The Z23 and Z123 groups had the greatest effect on the rhizosphere soil bacteria and Actinomyces. Overall, the soil nutrient content of the Z13 group increased the most, and the contents of available phosphorus, available potassium, available nitrogen, total phosphorus, and organic matter increased by 47.71%, 27.36%, 26.78%, 25.13%, and 31.72%, respectively, compared with those in the CK group. Conclusion: These results show that the treatment groups that included different combinations of strains were superior to the single-strain treatment groups, and the Z123 group was the best treatment group when considering bulb biomass and alkaloid and soil nutrient contents. Applying phosphorus-solubilizing fungus fertilizer is highly feasible during F. taipaiensis production in the field.
Root-knot nematodes Meloidogyne spp. are sedentary endoparasites that infest a wide range of plant species; they are also widely distributed, making them one of the most economically significant pests. Similarly, damage caused by Aphelenchoides fragariae can lead to substantial reductions in both crop yield and quality. This research focused on the rhizosphere of Helianthus tuberosus L. (variety Albik), grown in a Polish plantation. The experiment was conducted at the National Institute of Horticultural Research in Skierniewice, using concrete rings filled with medium sandy soil amended with 10% peat. The treatments included the following: control (no amendments), silver solution (Ag+) (120 mg/L soil), and vermicompost (Ve) (20 L of Eisenia fetida vermicompost). Each treatment was replicated four times. Compared with control, (Ve) significantly decreased the numbers of Aphelenchoides fragariae and Meloidogyne hapla, by about 48% and 31%. The application of (Ag+) led to the most significant reduction in population density in both nematode species, with A. fragariae decreasing by over 67% and M. hapla by approximately 75%.
China has significant mineral resources, but prolonged extraction has caused considerable environmental degradation. Interactions among rhizosphere, phyllosphere, and soil microorganisms, along with host plants, are essential for supporting plant growth and increasing stress tolerance. This study employed high-throughput sequencing to assess microbial diversity and community structure related to four common tree species in the mountainous areas of Shanxi Province, with samples collected from three regions over two seasons and three locations. The dominant fungal and bacterial phyla identified were Ascomycota, Basidiomycota, Mortierellomycota, Pseudomonadota, Actinobacteriota, Gemmatimonadota, Acidobacteria, Myxococcota, and Firmicutes. Alpha-diversity analysis revealed that Taiyue Mountain exhibited the highest fungal diversity among the plots, while Liushenyu displayed the highest bacterial diversity. Alpha-diversity was greater in spring than in summer across the seasons. Significant differences in Alpha-diversity were observed among different tree species, with Betula platyphylla showing the lowest diversity. In comparison to phyllosphere microorganisms, rhizosphere and soil microorganisms exhibited higher diversity, richness, and evenness. Beta-diversity analysis indicated significant differences in fungal and bacterial community composition between spring and summer samples, as well as among samples from leaves, roots, and soil. The assessment of soil physicochemical properties and redundancy analysis demonstrated that soil moisture content and organic matter were key factors influencing the composition of fungal and bacterial communities. These findings provide valuable insights into the structural changes in plant microbial communities in mining areas and the restoration of damaged ecosystems.
Salt stress threatens global food security, and although plant growth-promoting rhizobacteria (PGPR) can boost plant resistance and productivity, their field effects are poorly understood. Therefore, this experimental trial explored the mechanisms of PGPR-induced salt stress resistance on ion homeostasis, the photosynthetic system, enzymatic activities, and rhizosphere diversity in rice. The study was conducted in the first week of May 2022, using rice (Tongxi 945) seeds, which were pelleted at the seedling nursery and cultivated in the field under salinity conditions (0.5 and 2.35 g kg- 1) with (+) or without (-) PGPR treatment. Na+/K+ concentrations, photosynthetic, leaf water potential, enzymatic activities, and changes in rhizosphere microorganisms were measured at the heading stage of rice. The findings of this study revealed that salinity stress significantly increased Na+ concentrations in leaves (257.70%), the leaf Na+/K+ ratio (567.96%), and leaf water potential (63.47%) while markedly reducing the net photosynthetic rate (71.72%), stomatal conductance (81.36%), thousand-grain weight (2.22%), and yield (114.15%). However, the application of PGPR mitigated the adverse effects of salinity stress by reducing Na+ concentrations in roots (45.22%) and leaves (26.20%), the root Na+/K+ ratio (64.68%), and leaf water potential (31.39%). PGPR also significantly improved the net photosynthetic rate (29.75%), stomatal conductance (46.89%), transpiration rate (25.56%), and chlorophyll content (11.95%). Applying PGPR significantly enhanced antioxidant enzyme activity, regulated carbon metabolism, increased microbial diversity in rhizosphere soil, and boosted the abundance of dominant fungal genera, alleviating salt stress damage to rice. Overall, PGPR improves microbial diversity, photosynthesis, and enzyme activities, mitigating salt stress effects. Further research is necessary to implement these findings in agriculture and evaluate their long-term impacts on crop productivity and soil health.