共检索到 6

The coupling effects of rainfall, earthquake, and complex topographic and geological conditions complicate the dynamic responses and disasters of slope-tunnel systems. For this, the large-scale shaking table tests were carried out to explore the dynamic responses of steep bedding slope-tunnel system under the coupling effect of rainfall and earthquake. Results show that the slope surface and elevation amplification effect exhibit pronounced nonlinear change caused by the tunnel and weak interlayers. When seismic wave propagates to tunnels, the weak interlayers and rock intersecting areas present complex wave field distribution characteristics. The dynamic responses of the slope are influenced by the frequency, amplitude, and direction of seismic waves. The acceleration amplification coefficient initially rises and then falls as increasing seismic frequency, peaking at 20 Hz. Additionally, the seismic damage process of slope is categorized into elastic (2-3 m/s2), elastoplastic (4-5 m/s2) and plastic damage stages (>= 6.5 m/s2). In elastic stage, MPGA (ratio of acceleration amplification factor) increases with increasing seismic intensity, without obvious strain distribution change. In plastic stage, MPGA begins to gradually plummet, and the strain is mainly distributed in the damaged area. The modes of seismic damage in the slope-tunnel system are mainly of tensile failure of the weak interlayer, cracking failure of tunnel lining, formation of persistent cracks on the slope crest and waist, development and outward shearing of the sliding mass, and buckling failure at the slope foot under extrusion of the upper rock body. This study can serve as a reference for predicting the failure modes of tunnel-slope system in strong seismic regions. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-04-01 DOI: 10.1016/j.jrmge.2024.09.011 ISSN: 1674-7755

Seismicity resulting from the near- or in-field fault activation significantly affects the stability of largescale underground caverns that are operating under high-stress conditions. A comprehensive scientific assessment of the operational safety of such caverns requires an in-depth understanding of the response characteristics of the rock mass subjected to dynamic disturbances. To address this issue, we conducted true triaxial modeling tests and dynamic numerical simulations on large underground caverns to investigate the impact of static stress levels, dynamic load parameters, and input directions on the response characteristics of the surrounding rock mass. The findings reveal that: (1) When subjected to identical incident stress waves and static loads, the surrounding rock mass exhibits the greatest stress response during horizontal incidence. When the incident direction is fixed, the mechanical response is more pronounced at the cavern wall parallel to the direction of dynamic loading. (2) A high initial static stress level specifically enhances the impact of dynamic loading. (3) The response of the surrounding rock mass is directly linked to the amplitude of the incident stress wave. High amplitude results in tensile damage in regions experiencing tensile stress concentration under static loading and shear damage in regions experiencing compressive stress concentration. These results have significant implications for the evaluation and prevention of dynamic disasters in the surrounding rock of underground caverns experiencing dynamic disturbances. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-04-01 DOI: 10.1016/j.jrmge.2024.04.034 ISSN: 1674-7755

The liquefaction-induced lateral spreading of the fluvial terraces can cause tremendous physical damage to the natural and built environments in the lower reaches of Yangtze River. This paper presents an integrated nonlinear site response analyses method to characterize the large-scale lateral spreading behavior in the wide river valley of Yangtze River at the scale of several kilometers in the Abaqus/Explicit code, incorporating the main features such as the spatial variability of liquefiable deposit, the liquefaction initiation and cyclic mobility at the post liquefaction stage and the geometric nonlinearity induced by the extensively large deformation. In particular, the large-deformation behavior in the numerical model is simulated by the plasticity-based model at the element level and the arbitrary Lagrange-Euler (ALE) method at the model mesh level. The key factors influencing lateral spreading behavior are investigated, involving the ground motion characteristics, the slope angle of fluvial terraces, and the spatial variability of site condition. The numerical results indicate significant spatial variation characteristics of the lateral spreading of the fluvial terraces, triggered in the slightly inclined slope. Three generation stages of lateral spreading could be identified in the time-history curve of lateral displacement, i.e. swing stage, slip stage and creep stage, respectively. Finally, the model performance of the proposed modelling method is evaluated against the widely-used empirical formula, and the difference between each other is interpreted, which provides new insights into the mechanism of liquefaction-induced lateral spreading of the fluvial terraces in the wide river valley.

期刊论文 2025-02-21 DOI: 10.1016/j.enggeo.2024.107900 ISSN: 0013-7952

In order to study the deformation law and failure characteristics of shield tunnel obliquely crossing ground fissure under earthquake action, taking the shield tunnel of Xi 'an Metro Line 8 crossing f3 ground fissure as the engineering background, the 1: 20 shaking table model test method was used to analyze the strain of shield tunnel, the contact pressure with surrounding rock soil, the dislocation of segment and the axial force of bolt in detail, and the seismic damage mechanism and failure characteristics of shield tunnel obliquely crossing ground fissure were obtained. The test results show that under the action of earthquake, the shield tunnel has complex three-dimensional deformation characteristics, among which the vertical deformation is the most obvious. The deformation is mainly concentrated in the location of the ground fissure. The tensile strain and contact pressure of the hanging wall of the tunnel segment are greater than the strain value and contact pressure of the footwall. Because the vertical deformation of the tunnel is the largest, the bolts at the vault and the arch bottom are most obviously pulled. Excavation after the test, it can be seen that the tunnel appeared the phenomenon of ring joint opening, lining cracking and other damage. Under the action of the earthquake, the shield tunnel across the ground fissure is mainly subjected to tensile failure. The failure area is within 10 m from the ground fissure in the hanging wall and footwall, and the total length is 20 m. The closer to the ground fissure, the more serious the damage. The research results provide a scientific and reasonable reference for the subsequent construction and disaster prevention and mitigation design of Xi 'an Metro.

期刊论文 2025-01-01 DOI: 10.1016/j.engfailanal.2024.108990 ISSN: 1350-6307

As a long lifeline system of buried structures, the utility tunnel (UT) is vulnerable to earthquake invasion. For utility tunnels with inverted siphon arrangements crossing rivers, the seismic response is more complex due to the basin effect of acceleration in the topography and the influence of fluctuating hydrodynamic pressure, but there is currently a gap in targeted seismic response analyses and references. Based on a UT project in Haikou, this paper studied seismic responses of a cast-in-place UT considering the coupled model of water-soil-tunnel structure on ABAQUS software. Herein, the dynamic fluctuation of hydrodynamic pressure is simulated using an acoustic-solid interaction model. A viscoelastic artificial boundary was used to simulate the soil boundary effect, and seismic loads were equivalent to nodal forces. Considering seismic invading direction and varying water elevation, this paper investigates the dynamic response characteristics and damage mechanisms of river-crossing utility tunnels. This study shows that the basin effect causes the soil acceleration around the UT to show variability in different sections, and the amplification factor of the peak acceleration at the central location is almost doubled. The damage and dynamic water pressure of the UT are intensified under bidirectional seismic excitation, and the damage location is concentrated at the junction of the horizontal and the vertical section. Bending moments and axial forces are the main mechanical behaviors along the axial direction. Changes in river levels have a certain positive effect on the UT peak MISES, DAMAGEC, and SDEG, and it exhibits a certain degree of energy dissipation and seismic damping effect. For the aseismic design of cross-river cast-in-place utility tunnels, bidirectional seismic calculations should be performed, and the influence of river hydrodynamic pressure should not be neglected.

期刊论文 2024-11-01 DOI: 10.3390/buildings14113434

With more and more the transportation tunnels that have been and will be constructed in loess areas in Northwest China with high earthquake potential, the overall stability of tunnel portal sections under earthquake action and the related aseismic countermeasures has attracted the attention of both scholars and engineers, especially for tunnels in upper slope connecting high bridges crossing rivers or valleys. To study the dynamic response characteristics and damage evolution of steep loess slopes with tunnels under earthquake action, large-scale shaking table tests and numerical simulations were performed on steep loess slopes with tunnels. In particular, three-dimensional noncontact optical measurement techniques were used to obtain the slope surface displacements. The results showed that the main deformation patterns of the studied slopes were horizontal movement and settlement when the seismic waves were input in the X and X-Z directions, respectively. However, the seismic wave from the X direction had a greater impact on the deformation of a slope than that from the X-Z direction, and the tunnel portal slopes were ultimately destroyed under the action of a large horizontal seismic acceleration. Slope failure ahead of a tunnel was divided into four stages, i.e., the elastic deformation stage, plastic deformation accumulation stage, local failure stage, and overall failure stage. The existence of the tunnel had a great influence on the peak ground acceleration (PGA) and the PGA amplification factor (PGAAF) of the surrounding soil mass. The changes in the PGD and PGA on the slope surface determined via numerical simulation were basically consistent with the experimental results.

期刊论文 2024-05-01 DOI: 10.1007/s10064-024-03654-5 ISSN: 1435-9529
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页