The present document presents a review on the use of the finite element software package CODE_BRIGHT to simulate reinforced soil structures (RSS). RSS are composed of longitudinal steel or polymeric materials, placed orthogonal to the main stress direction in a soil mass, acting as tension-bearing elements. A common application of RSS is in retaining structures, in the form of reinforced soil walls (RSWs). RSW are usually designed with analytical methods, which have limited capabilities when predicting a structure's deformation response. To improve on this, the use of numerical tools allows to quantify the stress-strain response of complex, compound structures, such as RSWs. Several factors must be considered when modelling RSS, including reinforcement response, which can be non-linear under several circumstance (including time- and temperature-dependencies), soil-reinforcement interaction, soil-structure interaction, and soil response, all of which can be affected by the presence of moisture. Using laboratory measured data, the individual response of reinforcements (e.g., creep elongation), as well as the compound behaviour of soil-reinforcement material (e.g., pullout response) can be simulated to explore individual and compound response. Depending on the modelled phenomena, numerical simulations may include 2D and 3D representations. For full-scale reinforced soil walls, the stress-strain response within the soil mass, reinforcements, concrete facing panels, and connections can be studied in magnitude and distribution. Details regarding special considerations of how to model such structures with CODE_BRIGHT and other commercially available software are provided. Insights on the thermo-hydraulic repone of RSWs are covered. Advantages, limitations and future lines of research in the use of CODE_BRIGHT are explored.
The study investigates the interaction between geogrids and two distinct granular backfill materials, Yamuna sand and coal mine overburden through a combination of laboratory experiments and numerical simulations. It evaluates the physical and mechanical properties of coalmine overburden and Yamuna sand, and the pullout performance of geogrid embedded in both materials. A large-scale pullout box was utilised to conduct the experiments, and the results showed that coalmine overburden offers higher pullout resistance than Yamuna sand. The effect of physical parameters such as elasticity of geogrid, geogrid geometry and angle of inclination were analysed using the discrete element method. The pullout resistance of geogrids mainly depends on the elastic properties of the material. The study also shows the existence of an optimum spacing between longitudinal and transverse ribs.