BackgroundAntarctica and its unique biodiversity are increasingly at risk from the effects of global climate change and other human influences. A significant recent element underpinning strategies for Antarctic conservation has been the development of a system of Antarctic Conservation Biogeographic Regions (ACBRs). The datasets supporting this classification are, however, dominated by eukaryotic taxa, with contributions from the bacterial domain restricted to Actinomycetota and Cyanobacteriota. Nevertheless, the ice-free areas of the Antarctic continent and the sub-Antarctic islands are dominated in terms of diversity by bacteria. Our study aims to generate a comprehensive phylogenetic dataset of Antarctic bacteria with wide geographical coverage on the continent and sub-Antarctic islands, to investigate whether bacterial diversity and distribution is reflected in the current ACBRs.ResultsSoil bacterial diversity and community composition did not fully conform with the ACBR classification. Although 19% of the variability was explained by this classification, the largest differences in bacterial community composition were between the broader continental and maritime Antarctic regions, where a degree of structural overlapping within continental and maritime bacterial communities was apparent, not fully reflecting the division into separate ACBRs. Strong divergence in soil bacterial community composition was also apparent between the Antarctic/sub-Antarctic islands and the Antarctic mainland. Bacterial communities were partially shaped by bioclimatic conditions, with 28% of dominant genera showing habitat preferences connected to at least one of the bioclimatic variables included in our analyses. These genera were also reported as indicator taxa for the ACBRs.ConclusionsOverall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities.APsmQ8MphSAgg4BzZyqdNTVideo AbstractConclusionsOverall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities.APsmQ8MphSAgg4BzZyqdNTVideo Abstract
The study analyzed synthetically spatiotemporal distribution and evolution status of moraine-dammed lakes and potential dangerous glacial lakes (PDGLs) in the Qinghai-Tibetan Plateau (QTP) and revealed integrated risk degree of county-based glacier lake outburst floods (GLOFs) disaster by combining hazard of PDGLs, regional exposure, vulnerability of exposed elements, and adaptability and using the analytic hierarchy process and weighted comprehensive method. The results show there are 654 moraine-dammed lakes (> 0.018 km(2)) with a total area of 200.25 km(2)in the QTP in the 2010s, of which 246 lakes with a total area of 78.38 km(2)are identified as PDGLs. Compared with 1990s, the number of lakes decreased only by 2.22%, whereas total lake area expanded by 25%. All PDGLs area increased by 84.40% and was higher significantly than 4.06% of non-PDGLs. The zones at very high and high integrated risk of GLOF disasters are concentrated on the middle Himalayas, middle-eastern Nyainqentanglha, and southern Tanggula Mountain. On the county scale, Nyalam, Tingri, Dinggye, Lhozhag, Zhongba, Gamba, Kangma of the Himalayas, and Nierong, Dingqing, Banbar, Baqing, Bomi, and Basu of the Nyainqentanglha are located in the very high-risk zone, whereas other areas have low and very low integrated risk. The regionalization results for GLOF disasters risk are consistent with the distribution of historical GLOF disaster sites.