RISTRETTO is a visible high-resolution spectrograph fed by an extreme adaptive optics (AO) system, to be proposed as a visitor instrument on ESO VLT. The main science goal of RISTRETTO is to pioneer the detection and atmospheric characterisation of exoplanets in reflected light, in particular the temperate rocky planet Proxima b. RISTRETTO will be able to measure albedos and detect atmospheric features in a number of exoplanets orbiting nearby stars for the first time. It will do so by combining a high-contrast AO system working at the diffraction limit of the telescope to a high-resolution spectrograph, via a 7-spaxel integral-field unit (IFU) feeding single-mode fibers. Further science cases for RISTRETTO include the study of accreting protoplanets such as PDS70b/c through spectrally-resolved H-alpha emission, and spatially-resolved studies of Solar System objects such as icy moons and the ice giants Uranus and Neptune. The project is in the manufacturing phase for the spectrograph sub-system, and the preliminary design phase for the AO front-end. Specific developments for RISTRETTO include a novel coronagraphic IFU combining a phase-induced amplitude apodizer (PIAA) to a 3D-printed microlens array feeding a bundle of single-mode fibers. It also features an XAO system with a dual wavefront sensor aiming at high robustness and sensitivity, including to pupil fragmentation. RISTRETTO is a pathfinder instrument in view of similar developments at the ELT, in particular the SCAO-IFU mode of ELT-ANDES and the future ELT-PCS instrument.
The Tacquet Formation (TF) was first identified in geologic mapping of southern Mare Serenitatis as a distinct low albedo region split by the linear Rimae Menelaus rilles. A distinct western dome, split by a linear rille and less distinct eastern dome (the Menelaus domes) are also present within the TF. Previous Earth-based radar analyses showed that the TF has a lower circular polarization ratio consistent with a pyroclastic mantle. In this study, compositional and spectroscopic parameters were derived from Moon Mineralogy Mapper (M-3) data. Lunar Reconnaissance Orbiter Camera Wide Angle Camera (LROC WAC) and SELENE Kaguya Multiband Imager (MI) multispectral data were also utilized. FeO derived from MI data for the TF and Menelaus domes was elevated at levels consistent with pyroclastic glasses. While not diagnostic of pyroclastics, TiO2 derived from LROC WAC data over the TF and Menelaus domes was also elevated relative to the background materials. Analysis of 1 and 2 mu m band parameters also show the TF and Menelaus domes as being distinct with a band center moderately longer than 1 mu m and 2 mu m band center shorter than the surroundings, characteristics consistent with pyroclastic glass and/or increased ilmenite. M-3 data thermally corrected via two different thermal correction approaches indicate a moderately deeper band in the 3 mu m region indicative of OH and/or H2O, a characteristic that is also potentially associated with pyroclastic deposits. These compositional findings are consistent with the Earth-based radar data suggesting that the TF is a pyroclastic mantle and potentially represents a previously unrecognized sub-class of pyroclastic deposits associated with lunar volcanic domes.
Reflectance spectroscopy of Apollo lunar soil samples curated in an air- and water-free, sealed environment since recovery and return to Earth has been carried out under water-, oxygen-, CO2- and organic-controlled conditions. Spectra of these pristine samples contain features near 3 mu m wavelength similar to those observed from the lunar surface by the Chandrayaan-1 Moon Mineralogy Mapper (M-3), Cassini Visual and Infrared Mapping Spectrometer (VIMS), and Deep Impact Extrasolar Planet Observation and Deep Impact Extended Investigation (EPDXI) High-Resolution Instrument (HRI) instruments. Spectral feature characteristics and inferred OH/H2O concentrations are within the range of those observed by spacecraft instruments. These findings confirm that the 3 mu m feature from the lunar surface results from the presence of hydration in the form of bound OH and H2O. Implantation of solar wind H+ appears to be the most plausible formation mechanism for most of the observed lunar OH and H2O. (C) 2014 Elsevier B.V. All rights reserved.