Recycled aggregates (RA) from construction and demolition waste have many shortcomings such as high porosity and low strength due to adhered mortar and defects inside. If the defects (micropores and microcracks) of RA were repaired, the quality of RA could be improved greatly and its application could be further enlarged. Our previous study has proposed a new modification method, enzyme-induced carbonate precipitation (EICP), to repair the internal defects of RA. In this study, the efforts were focused on the optimization of the EICP treatment. It was found that the two-step immersion method, consisting of preimmersing in CO(NH2)2-Ca(NO3)2 solution for 24 h, then adding urease solution at once with single treatment duration of 5 days and cycling two treatments, was the optimal treatment. Compared with the untreated RA, the water absorption and crush value of treated recycled concrete aggregates (T-CA) were decreased by 7.01% and 9.91%, respectively, and 21.59% and 14.40% for treated recycled mixed aggregates (T-MA), respectively. By use of the optimized EICP-treated RA, the compressive strength of concrete increased by 6.05% (T-CA concrete) and 9.23% (T-MA concrete), and the water absorption of concrete decrease by 11.46% (T-CA concrete) and 18.62% (T-MA concrete). This indicates that the optimized EICP treatment could reduce the porosity and improve the strength of aggregates, thus enhancing the mechanical properties and impermeability of recycled concrete.
Insufficient understanding of the stress-strain behavior of pavements built over backfilled trenches, particularly with recycled aggregates, often leads to overdesign or overcompaction, raising costs and project delays. This research investigates how compaction levels during backfilling impact the pavement performance over these trenches. Various recycled material mixtures, both unbound and cement-treated, are compared with conventional crushed rock. Investigations included repeated load triaxial (RLT) tests, microstructural analysis with scanning electron microscopy, environmental assessments, and modeling with FlexPAVETM, a pavement response and performance analysis software. RLT test results were incorporated into the FlexPAVETM models by utilizing established constitutive resilient modulus models. Stress-strain responses of pavements over recycled aggregate backfill, compacted with standard and modified Proctor efforts, were compared with those over crushed rock and natural clay subgrades. Outcomes revealed that the standard compaction energy was sufficient for the desired performance. Fatigue and rutting strains with recycled mixtures closely resembled those with crushed rock, making them viable green alternatives. Pavements over backfilled trenches exhibited 1.5 and 1.8 times longer fatigue and rutting lives, respectively, than those over natural clay subgrades.
Dredged marine soils are increasingly recognized as a valuable resource amidst growing environmental concerns and the need for sustainable waste recycling. This study presents an innovative soil stabilization technique combining recycled aggregate (RA) and magnesium oxide (MgO) with a dual focus on enhancing soil properties and promoting carbon dioxide (CO2) sequestration. The stabilizing effects of RA and MgO were evaluated independently and synergistically under varied curing conditions and durations, with microstructural and mechanical properties analysed using scanned electron microscopy, X-ray diffraction, and uniaxial tests. Carbonation experiments quantified CO2 fixation potential, with the formation of hydration and carbonation products, along with dynamic moisture content and pH conditions, playing a significant role in enhancing the structural reinforcement of the soil. The combined RA-MgO treatment achieved superior mechanical stability (1.28-3.02 MPa) and a CO2 sequestration capacity of up to 11 g/kg without compromising performance. This study highlights the dual environmental and structural benefits of utilizing RA and low-content MgO for marine soil stabilization, offering a sustainable pathway to reduce carbon emissions, promote waste recycling, and support resilient infrastructure development.
Soil liquefaction significantly contributes to inducing catastrophic damage to the infrastructures. Different ground improvement methods were used widely to improve the seismic resistance of liquefiable deposits to mitigate liquefaction. Use of granular column technique is a popular and well-recognized improvement technique due to its drainage, shear reinforcement, and densification characteristics. However, studies relating to seismic resistance of stone column-reinforced ground against multiple shaking events were limited. Recent seismic events also have shown the possibility of liquefaction and reliquefaction due to multiple seismic events. Considering this, the performance assessment of the granular column technique in liquefiable soil under repeated shaking events is addressed in this study. The possibility of re-using construction and demolition waste concrete aggregates as an alternative to natural aggregates is also attempted to propose sustainability in ground improvement. For experimental testing, a saturated ground having 40% density was prepared and subjected to sequential incremental acceleration loading conditions, i.e., 0.1 g, 0.2 g, 0.3 g, and 0.4 g at 5 Hz loading frequency for 40 s shaking duration using a 1 g Uni-axial shake table. The efficiency of selected ground improvement was evaluated and compared with untreated ground. The experimental results showed that ground reinforced with granular columns performs better up to 0.2 g shaking events in minimizing pore water pressure and settlement. Possibility of column clogging, and inadequate area replacement ratio (5%) affects the performance of column during repeated shaking. Also, irrespective of improvement in in-situ ground density; continuous generation of pore water pressure due to absence of drainage posing reliquefaction potential in untreated ground under repeated shaking events.
This paper presents the outcomes of the settlement profile of granular piles made with recycled aggregates reinforced in soft clay. The finite element analysis was applied to analyze the load-settlement response and time-dependent excess pore water pressure profile with variation in geometry of enhanced granular pile. Various sectional soil stratum cases have been examined, including variation in the spacing of granular piles on homogenous ground conditions and variation in both spacing and sectional shape. The investigation reveals that the increment in pile spacing leads to an increase in the peak of excess pore water pressure profile for all the materials. Moreover, increasing the penetration of granular piles improves the dissipation rate and load-carrying capacity. The outcome prevails that the lowest excess pore water pressure was recorded for recycled brick and the highest for recycled concrete aggregate. Similarly, the comparisons were also shown for limestone, marble, granite, and sandstone. The results of this investigation were suitable for soft soil improvement in filler materials and load-bearing structures.
This paper aimed to investigate the feasibility of partially or completely replacing natural aggregates with recycled aggregates from construction and demolition wastes for low-carbon-emission use as coarse-grained embankment fill materials. The laboratory specimens were prepared by blending natural and recycled aggregates at varying proportions, and a series of laboratory repeated load triaxial compression tests were carried out to study the effects of material index properties and dynamic stress states on the resilient modulus and permanent strain characteristics. Based on the experimental results and by considering the main influencing parameters of the resilient modulus and permanent deformation, an artificial neural network (ANN) prediction model with optimal architecture was developed and optimized by the particle swarm optimization (PSO) algorithm, and its performance and accuracy were verified by supplementary analyses. A shakedown state classification method was proposed based on the unsupervised clustering algorithm, and a prediction model of critical dynamic stress was established based on the machine learning (ML) method and the shakedown state classification results. The research results indicate that the stress state has a greater influence on the resilient modulus and permanent deformation characteristics than other factors, and the shear stress ratio has a significant effect on the shakedown state. The resilient modulus and critical dynamic stress of such specimens vary linearly with confining pressure. The improved PSO-ANN prediction model exhibits high prediction accuracy and robustness, superior to several other commonly used ML regression prediction algorithms. The resilient modulus and critical dynamic stress prediction methods based on ML algorithms can provide technical guidance and theoretical basis for the design and in-service maintenance of similar unbound granular materials.
In the context of efforts aimed at reducing carbon emissions, the utilization of recycled aggregate soil mixes for soil stabilization has garnered considerable interest. This study examines the mechanical properties of mixed soil samples, varying by dosage of a soft soil curing agent C, recycled aggregate R content, and curing duration. Mechanical evaluations were conducted using unconfined compressive strength tests (UCS), field emission scanning electron microscopy (FESEM), and laser diffraction particle size meter tests (PSD). The results indicate that the strength of the mixed soil samples first increases and then decreases with higher dosages of recycled aggregate, reaching optimal strength at a 20% dosage. Similarly, an increase in curing agent dosage enhances the strength, peaking at 20%. The maximum strength of the mixed soils is achieved at 28 days under various proportions. The introduction of the curing agent leads to the formation of a flocculent structure, as observed in FESEM, which contributes to the enhanced strength of the soil mixes. Specimens prepared with a combination of 20% R and 20% C, maintained at a constant moisture content of 20%, and cured for 28 days exhibit a balance between economic, environmental, and engineering performance.
Recycled aggregate base, usually utilized in permeable roadways, can be stabilized by geosynthetics to reduce rutting. However, the inclusion of geosynthetics would cause a magnified resilient behavior of the aggregate base under cyclic loading and the mechanism is still not well understood. In this study, cyclic triaxial tests were conducted to investigate the effect of the geosynthetic on the performance of the recycled aggregates. Results show that the resilient strains of aggregate samples stabilized by geosynthetics increased; correspondingly, the calculated loading/unloading moduli decreased and volumetric strains increased. However, a significant reduction of the cumulative plastic strains was observed. The main reason for such results is that the lateral confinement provided by geosynthetics was mobilized and caused the major principal stress to vary from the vertical direction to the lateral direction periodically along with the applied cyclic loading. This cyclic variation of the major principal stress would induce a cyclic shear action that causes the structural rearrangement of aggregates, leading to the dilation of samples. The major principal stress in the lateral direction during the unloading process results in a large vertical extension, which not only leads to a magnified resilient strain but also causes a reduced plastic strain.