Small organic compounds (SOCs) are widespread environmental pollutants that pose a significant threat to ecosystem health and human well-being. In this study, the FrmA gene from Escherichia coli was overexpressed alone or in combination with FrmB in Arabidopsis thaliana and their resistance to multiple SOCs was investigated. The transgenic plants exhibited varying degrees of increased tolerance to methanol, formic acid, toluene, and phenol, extending beyond the known role of FrmA in formaldehyde metabolism. Biochemical and histochemical analyses showed reduced oxidative damage, especially in the FrmA/BOE lines, as evidenced by lower malondialdehyde (MDA), H2O2 and O-2(center dot-) levels, indicating improved scavenging of reactive oxygen species (ROS). SOC treatment led to significantly higher levels of glutathione (GSH) and, to a lesser extent, ascorbic acid (AsA) in the transgenic plants than in the wild-types. After methanol exposure, GSH levels increased by 95 % and 72 % in the FrmA/BOE and FrmAOE plants, respectively, while showing no significant increase in the wild-type plants. The transgenic plants also maintained higher GSH:GSSG and AsA:DHA ratios, exhibited upregulated glutathione reductase (GR) and dehydroascorbate reductase (DHAR) activities, and correspondingly increased gene expression. In addition, the photosynthetic parameters of the transgenic plants were less affected by SOC stress, which represents a significant photosynthetic advantage. These results emphasize the potential of genetically engineered plants for phytoremediation and crop improvement, as they exhibit increased tolerance to multiple hazardous SOCs. This research lays the foundation for sustainable approaches to combat pollution and improve plant resilience in the face of escalating environmental problems.
As soil acidification occurs due to industrial and agricultural production processes, it can induce the release of rhizotoxic aluminium ions (Al3+) into the soil, ultimately causing aluminium (Al) stress. Excessive Al content in soil exhibits significant phytotoxicity, inhibiting the growth of roots and stems. In this study, we conducted an investigation into the Al stress tolerance of two apple rootstocks, namely 'YZ3' and 'YZ6', and discovered that 'YZ3' exhibited a superior ability to alleviate the inhibitory effects of Al stress on plant growth. By comparing the transcriptomes of two rootstocks, a differentially expressed gene, MdDUF506, containing an unknown functional (DUF) domain, was identified. Overexpression of MdDUF506 in apple and calli enhances the ability to scavenge reactive oxygen species (ROS), subsequently mitigating the oxidative damage induced by Al stress on plant growth and development. Furthermore, MdDUF506 regulates Al stress tolerance by modulating the expression of genes related to Al stress (MdSTOP1, MdRSL1, MdRSL4, MdGL2, and MdRAE1). MdDUF506 interacts with MdCNR8, positively regulating Al stress tolerance. Taken together, these discoveries offer crucial candidate genes for targeted breeding as well as fresh insights into resistance to Al stress.
In recent years, the effects of fluoride (F) pollution in numerous ecosystems such as groundwater, soil, etc. Have become a major issue worldwide. This increase in F pollution is a direct consequence of the unbridled use of fertilizers in agricultural and several other human activities that require immediate and appropriate action. Therefore, this manuscript reveals important findings on the efficacy of bacteria isolated from agricultural fields in central Chhattisgarh in manifesting resistance to F and in reversing the F-induced oxidative damage in susceptible Oryza sativa L, (Var. MTU1010). Chronic exposure of Oryza sativa L. to sodium fluoride (NaF) (50 mg L- 1) severely impeded growth and various physiological parameters such as germination percentage, biomass and root and shoot length and stimulated the formation of reactive oxygen species (ROS), which enhanced electrolyte leakage and formation of cytotoxic products like malondialdehyde. To this end, potential bacterial strains, namely MT2A, MT3A, MT4A, and Du3A were isolated, screened for various plant growth promoting (PGP) traits and used to explore their efficiency to mitigate F toxicity in Oryza sativa L. in vivo. The seedlings inoculated with the bacterial strains showed significant development as evidenced by an increase in root and shoot length, biomass and chlorophyll content. Additionally, inoculation of these strains in combination with F stress significantly decreased oxidative stress by increasing the expression of protective genes encoding antioxidant enzymes and boosted agronomic traits remarkably. Overall, the manuscript demonstrates the pivotal role played by the isolated bacteria in abating ill effects of F in the Oryza sativa L. seedlings and proves their potential as protective bioagents against F stress.