共检索到 2

The solidification of dredged marine sediments with high water content is important for maintenance dredging and reclamations. To reduce the carbon emission of solidification, low-carbon recycled wastes such as incinerated sewage sludge ash (ISSA) and ground granulated blastfurnace slag (GGBS) have been recently adopted as binding materials to replace conventional Portland cement. For soil slurry with ultra-high water content, using the consolidationsolidification combined method is an effective way to reduce the volume and improve the final mechanical properties. However, it is unclear how the consolidation interacts with solidification using the binding materials. In this study, a series of laboratory tests were conducted on dredged Hong Kong marine deposit slurry mixed with ISSA and GGBS with alkali activation by lime. The elemental consolidation tests controlled with different constant rates of strain and multistage loadings demonstrate that the rate of consolidation has significant effects on volume reduction and yielding stress development during consolidation-solidification treatment. Consolidationsolidification achieves higher volume reduction and yielding stress than pure solidification. As the rate of consolidation decreases, there is a smaller volume reduction at the same effective stress and less yielding stress enhancement at the same curing time. A scanning electron microscope with energy dispersive spectrometer was used to investigate hydration products and soil fabric after treatment. The slower rate of consolidation causes the looser structure and finer needleshaped products with the same curing period, which can explain the mechanical properties observed from the element tests.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04722 ISSN: 2214-5095

Stiff clay exists widely in the world, but its significant time- and temperature-dependent mechanical features have not been fully modeled. In the context of fractional consistency viscoplasticity and bounding/subloading surface theory, this study proposes a novel nonisothermal fractional order two-surface viscoplastic model for stiff clays. First, by proposing a generalized plastic strain rate, the isotach viscosity is modified and extended to both over-consolidated and nonisothermal conditions that take into consideration the effects of temperature and OCR on thermal accelerated creep. Then, two strain rate and temperature-dependent yield surfaces are proposed with isotropic and progressive hardening rules to consider thermal collapse, strain rate effects, and smooth transition from elastic to viscoplastic behaviors. Next, the stress-fractional operator of the loading surface, according to the principle of fractional consistency viscoplasticity, is introduced to describe the nonassociativity of stiff clays. Finally, the predictive ability of the model is validated by simulating triaxial tests on Boom clay with various stress paths considering the temperature- and time-dependent features of stiff clays.

期刊论文 2025-01-01 DOI: 10.1139/cgj-2023-0701 ISSN: 0008-3674
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页