The presence of water in lunar materials can significantly impact the evolution of lunar geology and environment, as well as provide necessary conditions for the utilization of lunar resources. However, due to the limitations of lunar remote sensing methods, it is challenging to obtain direct evidence of water or determine its form of occurrence. Laser Raman spectroscopy, on the other hand, can provide valuable information on the type, distribution, and content of water in lunar materials without the need for illumination, sample pretreatment, or destructive measures. In this study, we utilized Raman spectroscopy to detect and quantify the water-containing characteristics of typical lunar rocks and minerals, including adsorbed water, ice, crystalline water, and hydroxyl-structured water. First, we used a 532 nm laser micro-Raman spectroscopy to identify and analyze the water-containing signals of various forms of water in lunar soil simulants. We then examined and analyzed the detection limits of adsorbed water, crystalline water, and hydroxyl- structured water in these simulants, as well as the relationship between their content and signal intensity. Finally, we employed linear regression (LR), ridge regression (RR), and partial least squares regression (PLSR) to quantitatively analyze the contents of these three forms of water in the lunar soil simulants. Our results demonstrate that the characteristic spectral peaks of the four forms of water in the lunar soil simulants can be clearly identified, with peak distribution regions located at 100-1 700 cm(-1) and 2 600-3 900 cm(-1) for the lunar soil components and water bodies, respectively. The spectral peaks of water are a combination of broad envelope peaks of hydrogen-bonded OH and sharp peaks of non- hydrogen-bonded OH stretching vibrations in varying proportions. The detection limits for adsorbed water, crystalline water (MgSO47H(2)O), and hydroxyl water (Al2Si2O5(OH)(4)) in the lunar soil simulants are 1.3 wt%, 0. 8 wt%, and 0. 3 wt%, respectively. There is a linear relationship between the intensity of water-containing peaks and the water content in the lunar soil simulants, with root mean square errors of 1. 75 wt%, 1. 16 wt%, and 1. 19 wt% obtained through LR, RR, and PLSR.
In this work, we employed correlative imaging techniques to investigate the complex corrosion systems in nails from the Phoenician-Punic site of Motya (Sicily, Italy), combining analytical chemistry and imaging tomography across multiple dimensions and scales. To accomplish this, we used correlative light and electron microscopy, micro-Raman spectroscopy, and X-ray microscopy. The results showed remarkable differences in the condition of the nails, with one nail well-preserved and thinly coated with oxyhydroxides, while the other nail exhibited extensive corrosion and degradation with distinct corrosion layers and the presence of soil minerals. Multiscale X-ray microscopy provided 3D imaging of the internal structures, revealing cracks and the original shape of the nails. This work contributes to the understanding of stress corrosion in metals and has implications for the development of strategies to prevent and control corrosion processes. (c) 2024 The Author(s). Published by Elsevier Masson SAS on behalf of Consiglio Nazionale delle Ricerche (CNR).
With the development of technology and methodologies, Raman spectrometers are becoming efficient candidate payloads for planetary materials characterizations in deep space exploration missions. The National Aeronautics and Space Administration (NASA) already deployed two Raman instruments, Super Cam and SHERLOC, onboard the Perseverance Rover in the Mars 2020 mission. In the ground test, the SHERLOC team found an axial offset (similar to 720 mu m) between the ACI (Autofocus Context Imager) and the spectrometer focus, which would obviously affect the acquired Raman intensity if not corrected. To eliminate this error and, more importantly, simplify the application of Raman instruments in deep space exploration missions, we propose an automatic focusing method wherein Raman signals are optimized during spectrum collection. We put forward a novel method that is realized by evaluating focus conditions numerically and searching for the extremum point as the final focal point. To verify the effectiveness of this method, we developed an Auto-focus Raman Probe (SDU-ARP) in our laboratory. This method provides a research direction for scenarios in which spectrometers cannot focus on a target using any other criterion. The utilization of this auto-focusing method can offer better spectra and fewer acquisitions in focusing procedure, and the spectrometer payload can be deployed in light-weight bodies (e.g., asteroids) or in poor illumination conditions (e.g., the permanently shadowed region in the Lunar south polar area) in deep space exploration missions.