Soil freeze-thaw state influences multiple terrestrial ecosystem processes, such as soil hydrology and carbon cycling. However, knowledge of historical long-term changes in the timing, duration, and temperature of freeze-thaw processes remains insufficient, and studies exploring the combined or individual contributions of climatic factors-such as air temperature, precipitation, snow depth, and wind speed-are rare, particularly in current thermokarst landscapes induced by abrupt permafrost thawing. Based on ERA5-Land reanalysis, MODIS observations, and integrated thermokarst landform maps, we found that: 1) Hourly soil temperature from the reanalysis effectively captured the temporal variations of in-situ observations, with Pearson' r of 0.66-0.91. 2) Despite an insignificant decrease in daily freeze-thaw cycles in 1981-2022, other indicators in the Qinghai-Tibet Plateau (QTP) changed significantly, including delayed freezing onset (0.113 d yr- 1), advanced thawing onset (-0.22 d yr- 1), reduced frozen days (-0.365 d yr- 1), increased frozen temperature (0.014 degrees C yr- 1), and decreased daily freeze-thaw temperature range (-0.015 degrees C yr- 1). 3) Total contributions indicated air temperature was the dominant climatic driver of these changes, while indicators characterizing daily freeze-thaw cycles were influenced mainly by the combined effects of increased precipitation and air temperature, with remarkable spatial heterogeneity. 4) When regionally averaged, completely thawed days increased faster in the thermokarstaffected areas than in their primarily distributed grasslands-alpine steppe (47.69%) and alpine meadow (22.64%)-likely because of their stronger warming effect of precipitation. Locally, paired comparison within 3 x 3 pixel windows from MODIS data revealed consistent results, which were pronounced when the thermokarst-affected area exceeded about 38% per 1 km2. Conclusively, the warming and wetting climate has significantly altered soil freeze-thaw processes on the QTP, with the frozen soil environment in thermokarstaffected areas, dominated by thermokarst lakes, undergoing more rapid degradation. These insights are crucial for predicting freeze-thaw dynamics and assessing their ecological impacts on alpine grasslands.
Vast deserts and sandy lands in the mid-latitudes cover an area of 17.64 x 106 km2, with 6.98 x 106 km2 experiencing seasonal frozen soil (SFG). Freeze-thaw cycles of SFG significantly influence local surface processes in deserts, impacting meteorological disasters such as infrastructure failures and sandstorms. This study investigates the freeze-thaw dynamics of SFG in crescent dunes from three deserts in northern China: the Tengger Desert, Mu Us Sandy Land, and Ulan Buh Desert, over the period from 2019 to 2024.Freezing occurs from November to January, followed by thawing from January to March. The thawing rate (2.72 cm/day) was 1.8 times higher than the freezing rate (1.48 cm/day). The maximum seasonal freezing depth (MSFD) exceeded 0.80 mat all dune slopes, with depths surpassing 1.10 mat the leeward slope and lower slope positions. Soil moisture content, ranging from 1 % to 1.6 %, is critical for freezing, and this threshold varies depending on the dune's mechanical composition. The hardness of frozen desert soil is primarily controlled by moisture, along with temperature and particle size.Temperature initiates freezing, while moisture and particle size control the resulting hardness.These findings shed light on the seasonal freeze-thaw processes in desert soils and have practical implications for agricultural management, engineering design, and environmental hazard mitigation in arid regions.
The Qinghai-Tibetan Plateau (QTP) has undergone significant warming, wetting, and greening (WWG) over decades, alongside substantial alterations in hydrological regimes. These changes present great challenges for safeguarding water resources and ecosystems downstream. However, the lack of field observation and systematic research has obscured our understanding of how hydrological processes respond to the combined influences of climate-permafrost-vegetation. This study focuses on the source regions of the Yangtze River, one of the highest permafrost-covered basins on the QTP, and employs a process-based hydrological model to quantify the effects of WWG on hydrological processes. We show that the increasing precipitation dominates subsurface runoff changes while rising temperature primarily affects surface runoff changes by reducing the frozen duration (-52 days/century) and thickening the active layer (+2.4 cm/year). Greening vegetation primarily affects transpiration and interception evaporation. Warming, wetting, and greening will cause a transition in runoff dynamics from surface runoff dominance to subsurface runoff dominance in permafrost basins, and reduce the risk of both flooding and water shortage indicated by the decreased maximum low flow duration and maximum high flow duration of 11.0 and 5.0 days/year, respectively. Moreover, cold permafrost regions exhibit a greater propensity for generating runoff, as indicated by a higher annual increase in runoff coefficient (0.005/year) and total runoff (4.81 mm/year), compared to warm permafrost regions (with increase of 0.001/year and 1.20 mm/year, respectively). These findings enhance the understanding of hydrological changes due to WWG and provide insights for water resources management in permafrost regions under climate change.
Under the action of freeze-thaw cycles, the internal temperature and water distribution of slope soils in cold regions change significantly, which directly affects the stability of slopes. In order to study the differences in hydrothermal reactions at different depths and their impacts on the stability of slopes. This study establishes both a freeze-thaw model and a hydrothermal coupling model, combining field measurements with numerical simulations to examine the dynamic changes in hydrothermal characteristics within the slope. The results indicate that the variation in slope temperature with depth can be divided into three stages: initial freezing, stable freezing, and thawing. In the freezing stage, the negative temperature gradient drives water to migrate towards the freezing front, forming segregated ice and inducing frost heave. In the thawing stage, the latent heat released by the phase change in segregated ice promotes water to move towards the slope toe, increasing the water content there and indirectly exacerbating the risk of slope instability. The heat and moisture transfer in frozen soil slopes shows non-linear and dynamic characteristics. The unique process of one-way freezing and two-way thawing makes the thawing rate 1.35 times that of the freezing rate, and this asymmetric characteristic is the key to understanding the mechanism of slope instability.
In the context of global climate change, changes in unfrozen water content in permafrost significantly impact regional terrestrial plant ecology and engineering stability. Through Differential Scanning Calorimetry (DSC) experiments, this study analyzed the thermal characteristic indicators, including supercooling temperature, freezing temperature, thawing temperature, critical temperature, and phase-transition temperature ranges, for silt loam with varying starting moisture levels throughout the freezing and thawing cycles. With varying starting moisture levels throughout the freezing and thawing cycles, a model describing the connection between soil temperature and variations in unfrozen water content during freeze-thaw cycles was established and corroborated with experimental data. The findings suggest that while freezing, the freezing and supercooling temperatures of unsaturated clay increased with the soil's starting moisture level, while those of saturated clay were less affected by water content. During thawing, the initial thawing temperature of clay was generally below 0 degrees C, and the thawing temperature exhibited a power function relationship with total water content. Model analysis revealed hysteresis effects in the unfrozen water content curve during freeze-thaw cycles. Both the phase-transition temperature range and model parameters were sensitive to temperature changes, indicating that the processes of permafrost freezing and thawing are mainly controlled by ambient temperature changes. The study highlights the stability of the difference between freezing temperature and supercooling temperature in clay during freezing. These results offer a conceptual framework for comprehending the thawing mechanisms of permafrost and analyzing the variations in mechanical properties and terrestrial ecosystems caused by temperature-dependent moisture changes in permafrost.
The Sanjiangyuan region, known as the Chinese Water Tower, serves as a crucial ecological zone that is highly sensitive to climate change. In recent years, rising temperatures and increased precipitation have led to permafrost melt and frequent occurrences of thermokarst landslides, exacerbating soil erosion issues. Although studies have explored the impact of freeze-thaw action (FTA) on soil properties, research on this phenomenon within the unique geomorphological unit of thermokarst landslides, formed from degrading permafrost, remains sparse. This study, set against the backdrop of temperature-induced soil landslides, combines field investigations and controlled laboratory experiments on typical thermokarst landslide bodies within the permafrost region of Sanjiangyuan to systematically investigate the effects of FTA on the properties of soils within thermokarst landslides. Furthermore, this study employs the EPIC model to establish an empirical formula for the soil erodibility (SE) factor before and after freeze-thaw cycles (FTCs). The results indicate that: (1) FTCs significantly alter soil particle composition, reducing the content of clay particles in the surface soil while increasing the content of sand particles and the median particle size, thus compromising soil structure and enhancing erodibility. (2) FTA initially significantly increases soil organic matter content (OMC); however, as the number of FTCs increases, the magnitude of these changes diminishes. The initial moisture content of the soil significantly influences the effects of FTA, with more pronounced changes in particle composition and OMC in soils with higher moisture content. (3) With an increasing number of FTCs, the SE K-value first significantly increases and then tends to stabilize, showing significant differences across the cycles (1 to 15) (p < 0.05). This study reveals that FTCs, by altering the physicochemical properties of the soil, significantly increase SE, providing a scientific basis for soil erosion control and ecological environmental protection in the Sanjiangyuan area.
A cast-in-place pile foundation, widely utilized in the permafrost regions of the Qinghai-Tibet Plateau, boasts superior load-bearing capacity, effectively mitigating the seasonal freeze-thaw effects. In permafrost regions, substantial pile foundation load-bearing capacity is provided by freezing strength, with the freezing strength determined by the temperature of the surrounding permafrost. In modern times, global warming has been causing permafrost degradation, posing a risk to the safety of existing pile foundations. In order to maintain the stability of these foundations, it is crucial to release excess ground heat, considering the temperature-dependent freezing strength of the ground to pile shaft. Two-phase closed thermosyphons (TPCTs) have demonstrated strong performance in the realm of cooling permafrost engineering. In this study, TPCTs were utilized to mitigate the impact of permafrost degradation by installing them around a concrete pile in order to cool the foundation ground. Following this installation, a model experiment was carried out, which ingeniously focused on analyzing the cooling performance, the process of cold energy dissipation, and the cooling scope of the TPCT pile. The study's findings indicate that the operation time of the TPCT pile accounted for about 50% of the entire freeze-thaw cycle. This device could effectively cool the surrounding foundation soil within a specified area. The TPCT pile exhibited a low temperature advantage of 0.36 degrees C in comparison with the scenario without TPCT in terms of surrounding geotemperature, although it experienced significant cold energy dissipation. The conclusions drawn from this study have significant value for maintaining piles in permafrost regions.
Snow cover variation significantly impacts alpine vegetation dynamics on the Tibetan Plateau (TP), yet this effect under climate change remains underexplored. This study uses a survival analysis model to assess the influence of snow on vegetation green-up dynamics, while controlling for key temperature and water availability factors. This analysis integrates multi-source data, including satellite-derived vegetation green-up dates (GUDs), snow depth, accumulated growing degree days (AGDD), downward shortwave radiation (SRAD), precipitation, and soil moisture. Our survival analysis model effectively simulated GUD on the TP, achieving an R of 0.62 (p < 0.01), a root mean square error (RMSE) of 11.20 days, and a bias of -1.41 days for 2020 GUD predictions. It outperformed both the model excluding snow depth and a linear regression model. By isolating snow's impact, we found it exerts a stronger influence on vegetation GUD than precipitation in snow-covered areas of the TP. Furthermore, snow depth effects varied seasonally: a 1-cm increase in preseason snow depth reduced green-up rates by 8.48% before 156(th) day but increased them by 4.74% afterward. This indicates that deeper preseason snow cover delays GUD before June, but advances it from June onward, rather than having a uniform effect. These findings highlight the critical role of snow and underscore the need to incorporate its distinct effects into vegetation phenology models in alpine regions.
Frozen soil resistivity exhibits high sensitivity to temperature variations and ice-water distribution. The conversion of soil water content (SWC) and resistivity based on petrophysical relationships enables the characterization of spatial distribution and changes in freezing and thawing states. Monitoring ground resistivity is essential for understanding frozen soil structure and evaluating climate change and ecosystems. The previous studies demonstrate that estimating soil resistivity below zero degrees based on the empirical model has significant errors. This work proposes a capillary bundle fractal model for frozen soil resistivity estimation based on SWC hydrologic parameters. The fractal theory describes the geoelectrical features of frozen porous media through the variable pore geometry and representative elementary volume. The sensitivity analysis discusses the potential relationships between pore parameters, conductance components, and fractal geometric parameters within frozen soil resistivity and reconstructs the hysteresis separation of freeze-thaw processes. The field test application in the seasonal freeze-thaw monitoring site demonstrates that the estimated resistivity and experimental samples are consistent with the field monitoring resistivity data. By combining unified conceptual assumptions, we established the connection between electrical permeability and thermal conductivity, offering a basis for exploring coupled hydro-thermal mechanisms in frozen soil. The proposed model accurately estimates the variations in seasonal frozen resistivity, providing a reliable reference for quantitatively analyzing the mechanisms of freeze-thaw processes.
Understanding the dynamics of soil respiration (Rs) in response to freeze-thaw cycles is crucial due to permafrost degradation on the Qinghai-Tibet Plateau (QTP). We conducted continuous in situ observations of Rs using an Li-8150 automated soil CO2 flux system, categorizing the freeze-thaw cycle into four stages: completely thawed (CT), autumn freeze-thaw (AFT), completely frozen (CF), and spring freeze-thaw (SFT). Our results revealed distinct differences in Rs magnitudes, diurnal patterns, and controlling factors across these stages, attributed to varying thermal regimes. The mean Rs values were as follows: 2.51 (1.10) mu mol center dot m(-2)center dot s(-1) (CT), 0.37 (0.04) mu mol center dot m(-2)center dot s(-1) (AFT), 0.19 (0.06) mu mol center dot m(-2)center dot s(-1) (CF), and 0.68 (0.19) mu mol center dot m(-2)center dot s(-1) (SFT). Cumulatively, the Rs contributions to annual totals were 89.32% (CT), 0.79% (AFT), 5.01% (CF), and 4.88% (SFT). Notably, the temperature sensitivity (Q10) value during SFT was 2.79 times greater than that in CT (4.63), underscoring the significance of CO2 emissions during spring warming. Soil temperature was the primary driver of Rs in the CT stage, while soil moisture at 5 cm depth and solar radiation significantly influenced Rs during SFT. Our findings suggest that global warming will alter seasonal Rs patterns as freeze-thaw phases evolve, emphasizing the need to monitor CO2 emissions from alpine meadow ecosystems during spring.