The current work gives a snapshot of pesticide residuals, their exposure levels, and the associated potential risks of some organophosphates in Coimbatore district, Tamil Nadu. The study has significant viewpoints on food safety and pesticide management. The pesticide residual analysis was carried out on two commonly used vegetables, tomato and brinjal. The QuEChERS method is used to extract pesticides and GC-MS/SIM analyses were used to quantify pesticide residues. Among the various samples tested, organophosphorus pesticides, such as Phorate Sulfoxide, Chlorpyrifos, and Malathion, were detected in some samples. In the majority of brinjal samples analyzed, no pesticide residues were detected. However, one sample showed the presence of malathion (0.001 mg/kg). The detected level of malathion was within the acceptable safety limits, indicating that the sample is safe for consumption. Nevertheless, in one of the tomato samples tested, the residual level of phorate sulfoxide (0.34 mg/kg) is found to be higher than the MRL with a health risk index of 2.79. Except for phorate sulfoxide, all the other pesticide residuals were within MRL. Phorate residues with a soil half-life of 2 to 173 days are readily water soluble and may leach easily into groundwater, adversely affecting human health. The dietary risk of phorate can also put people at increased health risks of reproductive harm, endocrine system disruption, neurological damage, and an increased risk of certain cancers. The study's outcome suggests the need to review the strict guidelines imposed on using unsafe pesticides. Also, future investigations are necessary to validate the presence of other toxic pesticides in the study area.
Corn is the second most widely farmed grain for human consumption. Low corn productivity due to damage caused by pests has led to using pesticides to control pest infestations. However, the uncontrolled application of pesticides on corn harms both environmental and human health. Accordingly, field experiments followed good agricultural practices to investigate the dissipation pattern and terminal residues of chlorfenapyr and methomyl in corn and compare the values with established safety limits. Gas chromatography-tandem mass spectrometer coupled with the quick, easy, cheap, effective, rugged, and safe technique was used to analyze residues of chlorfenapyr and methomyl in corn. The average recoveries varied from 94% to 105%, with relative standard deviations (RSDs) of 8%-13% for chlorfenapyr and from 99% to 111%, with RSDs of 10-16% for methomyl. Chlorfenapyr and methomyl residues degraded in corn following a first-order kinetic model, with an estimated half-life (t(1/2)) of 3.9 and 2.8 days, respectively, and significant degradation (91.4%-98.1.5%, respectively) after 14 days. Although the maximum residue limits of chlorfenapyr and methomyl for corn are yet to be formulated in Egypt, the long-term dietary risk for those pesticides was acceptable, with arisk quotient < 100%, according to the national assessments. These findings are required to guide the correct and safe application of these insecticides in Egypt.
Pesticides serve a crucial function in contemporary farming practices, safeguarding agricultural crops against pest infestations and boosting production outputs. However, indiscriminate use has caused environmental and human health damage. This study aimed to develop and validate a gas chromatography-flame ionization detection (GC-FID) methodology for the direct and routine analysis of spiromesifen residues in soil, leaves, and tomato fruits. The proposed method prioritizes simplicity by avoiding derivatization steps, offering advantages over existing approaches that utilize lengthy multi-step extraction or derivatization prior to GC analysis. A key novelty of this work is the development of a QuEChERS extraction coupled directly to GC-FID without further clean-up or chemical treatment steps, rendering the method more convenient and accessible for routine monitoring applications. Factors evaluated included: sample solvent; inlet and column temperature profiles; inlet type; sample volume; and injection technique. Recovery and matrix effect studies were conducted by fortifying tomato, leaf, and soil matrices at three different concentrations (0.5, 1, and 10 mu g ml(-1)). Quadruplicate analyses (n = 4) yielded mean recoveries of 98.74% (fruits), 93.92% (leaves), and 94.18% (soil), confirming efficient extraction. Matrix effects were negligible at -7.9%,-7.8%, and -5.3%, respectively. The chromatographic linearity of the developed GC-FID method was excellent over the 0.002-20 mu g ml(-1) range with R-2 > 0.9979. The method demonstrated good precision, with inter- and intra-day RSD% ranging from 0.06-1.8%, below the 3% limit. GC-MS analysis confirmed spiromesifen identification. Under greenhouse conditions, residual levels were 1.39 mg/kg in soil, 8.24 mg/kg in tomato, and 3.39 mg/kg in leaves. Dissipation followed first-order kinetics with a half-life of 1.6 days. The optimized GC-FID method is promising for monitoring spiromesifen usage and guiding agricultural practices.