Biochars, produced via pyrolysis, are gaining attention in applications ranging from soil amendments to energy storage and environmental remediation. While lignocellulosic biochars from woody biomass are well studied, algal biochars remain comparatively overlooked despite offering diverse organic and inorganic content that may broaden their applications. This study investigates how pyrolysis temperature and oxidative pretreatment affect the structure and properties of biochars derived from two macroalgae, Ulva expansa and Sargassum sp., under various pyrolysis conditions (500 to 900 degrees C). Using Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, and nanoindentation, it was found that the C-O and C-N surface functional groups decreased in Ulva but the C=O and C-O-C groups increased in Sargassum upon pyrolysis. The reduced modulus ranged between 2.6 to 7.9 GPa and was governed by pyrolytic carbon content and inorganic composition. Of these two factors, the amount and type of pyrolytic carbon were determined by the heating conditions, with oxidation at 200 degrees C generally preserving more carbon than oxidation at 300 degrees C. Meanwhile, the final pyrolysis temperature dictated residual carbon content, salt formation, and carbonation. These findings highlight the potential for tailored pyrolysis to produce algal biochars with customizable structures and properties, enabling environmental and industrial applications such as carbon sequestration, filtration, and energy storage.
Shale formations have recently gained plenty of attention owing to their large amounts of reserves. Horizontal drilling and hydraulic fracturing are the proposed approaches for the development of shale formations. The extended information of the mechanical properties of shale formation is crucial for designing a successful hydraulic fracturing operation. On the other hand, the mechanical properties of such organic-rich formations are greatly affected by the mechanical characteristics of the present kerogen (organic matter), which dramatically changes during the maturation process. In this study, a Qingshankou shale sample containing kerogen type I is mechanically investigated at different maturity levels using the grid nanoindentation approach. To this end, the original immature sample is artificially matured during hydrous (HP) and anhydrous (AHP) pyrolysis. More than 930 nanoindentation tests were performed on grids of 9 x 8 on the surface of 13 samples with different maturities. The test results showed that the presence of water during pyrolysis can significantly affect the shale sample's mechanical characteristics. In higher temperatures and higher levels of maturity, the role of water becomes more pronounced. During hydrous pyrolysis, kerogen produces larger amounts of oil and bitumen, which become progressively porous. While the original sample showed a Young's modulus value of more than 48 GPa, and it fluctuated between approximately 19 and 32 GPa during the HP scenario and between 17 and 34 GPa during the AHP process. In terms of hardness, the original sample exhibited an initial value of about 1.1 GPa and more mature samples reflected hardness values in the range of approximately 0.3 and 0.97 GPa in both scenarios. According to the trends of mechanical properties during maturation, mechanical properties decreased at the initial stage of maturation and remained relatively constant during the oil window. Then, another decline was detected at the wet-gas window's closure. In the dry-gas window, HP and AHP scenarios exhibited different behaviors mainly due to the chemical structure of the kerogen residue. 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
Tea is one of the most widely consumed non-alcoholic drink in the world. Green tea, black tea, white tea, and oolong tea are derived from the Camellia sinensis plant, a shrub native to China and India. It contains unique antioxidants. The most potent antioxidants may help against free radicals that can fight against cancer, heart disease, and clogged arteries. The polyphenols present in the tea help the cells from damage and reduce the risk of chronic diseases. The health benefits of these compounds remarkably increase the demand for tea. Tea production is rising drastically; consequently, enormous amounts of tea waste are also generated. Improper disposal and dumping of this tea waste creates a serious problem due to the incineration and the emission of greenhouse gases. This issue can be overcome by adopting suitable technology. Effective microbial degradation and composting of tea waste will contribute to high crop production and plant disease control. The value added products from tea waste can be used in different fields. Planned tea waste valorization processes could generate more income and create rural livelihood opportunities. This review highlights the valorization processes and value-added products from tea waste. The application of value added products for energy generation, wastewater treatment, soil conditioners, adsorbents, biofertilizers, food additives, dietary supplements, animal feed bioactive chemicals, dye, colorant, phytochemicals, bioplastics, cutlery products, scope, and future directions in sustainable utilization has been reviewed. This review article will be beneficial to the researchers for acquiring an in-depth knowledge on the versatile applications of tea waste.
In today's fast-paced technological era, multifaceted technological advancements in our contemporary lifestyle are surging the use of electronic devices, which are significantly piling e-waste and posing environmental concerns. This stock of e-waste is expected to keep rising up to 50 mt year(-1). Formal recycling of such humongous waste is a major challenge, especially in developing nations. Mishandling of e-waste poses serious threats to human health, soil, and water ecosystem, threatening ecological and environmental sustainability. Complex matrix of resourceful materials comprising valuable metals like gold, silver, and copper, and hazardous substances such as lead, mercury, cadmium, and brominated flame retardants make its judicious management even more crucial. Potential toxic elements such as Pb, Cd, Cr, As, and Hg, as well as plastic/microplastics, nanoparticles are prevalent in components like batteries, cathode ray tubes, circuit boards, glass and plastic components which are known to cause neurological, renal, and developmental damage in humans. Effective and sustainable management of these requires a comprehensive understanding of their sources, environmental behavior, and toxicological impacts. This review explores potential approached for sustainable e-waste recycling (recycling of glass, plastic, rare earth metals, and base metals), and resource recycling through pyrometallurgy, hydrometallurgy, biometallurgy, biohydrometallurgy, bioleaching and biodegradation plastic alongside challenges and prospects.
Biochar is a solid substance with a charcoal-like appearances. It is highly flammable and is made from the burning of agricultural and forest-based organic wastes by various controlled processes like pyrolysis. Biochar is rich in carbon and storage of the same in soil is highly recommended to ease off climate change by sequestration of carbon along with enhancing agricultural yield and production of energy. According to the World Health Organization, one of the biggest threats to human life in the present century is livestock water contamination. Among different contaminants, microbial contamination is responsible for several harmful diseases many of which are fatal. The current disinfectant methods are quite useful but they produce harmful by-products which can cause more hazards to human health. Magnetic biochar which is a modification of normal biochar is a green, facile, and cost-effective bacteriocide that has immense antimicrobial potential against water-borne pathogens. Magnetic biochar in conjugation with quaternary phosphonium salt produces Magnetic Biochar-Quaternary phosphonium salt [MBQ], which is a further modification of magnetic biochar that holds much better antimicrobial properties than biochar or magnetic biochar. It can successfully undergo inhibition of water-borne pathogens like Escherichia coli and Staphylococcus aureus. MBQ can disrupt the bacterial membrane and induce oxidative damage inside the bacteria, causing their inactivation and inhibition. MBQ also shows biocidal effects. In this review, we will discuss biochar, its properties, various methods of synthesis of biochar, different methods of modification of biochar, antimicrobial and antibacterial properties of biochar, magnetic biochar, and MBQ. Synthesis, Characterization, and antimicrobial properties of MBQ against waterborne microorganisms are also discussed in detail.
The fate of black biodegradable mulch film (MF) based on starch and poly(butylene-adipate-co-terephthalate)-co- terephthalate) (PBAT) in agricultural soil is investigated herein. Pristine (BIO-0) and UV-aged film samples (BIO-A192) were buried for 16 months at an experimental field in southern Italy. Visual, physical, chemical, morphological, and mechanical analyses were carried out before and after samples burial. Film residues in the form of macro- and microplastics in soil were analyzed at the end of the trial. Progressive deterioration of both pristine and UV-aged samples, with surface loss and alterations in mechanical properties, occurred from 42 days of burial. After 478 days, the apparent surface of BIO-0 and BIO-A192 films decreased by 57 % and 66 %, respectively. Burial determined a rapid depletion of starch from the polymeric blend, especially for the BIO-A192, while the degradation of the polyester phase was slower. Upon burial, an enrichment of aromatic moieties of PBAT in the film residues was observed, as well as microplastics release to soil. The analysis of the MF degradation products extracted from soil (0.006-0.008 % by mass in the soil samples) revealed the predominant presence of adipate moieties. After 478 days of burial, about 23 % and 17 % of the initial amount of BIO-0 and BIO-A192, respectively, were extracted from the soil. This comprehensive study underscores the complexity of biodegradation phenomena that involve the new generation of mulch films in the field. The different biodegradability of the polymeric components, the climate, and the soil conditions that did not strictly meet the parameters required for the standard test method devised for MFs, have significantly influenced their degradation rate. This finding further emphasizes the importance of implementing field experiments to accurately assess the real effects of biodegradable MFs on soil health and overall agroecosystem sustainability.
The temporal variability of microphysical parameters of pyrolysis smoke, retrieved by inverting the characteristics of aerosol scattering and extinction, has been studied. The polarization scattering phase functions and spectral extinction coefficients were measured for 65 hours in smoke aerosols produced from thermal decomposition of pine wood during low-temperature pyrolysis in the Big Aerosol Chamber (BAC) of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences. The microstructure parameters (volume concentration and mean radius of particles with division into fine and coarse fractions) and the complex refractive index of pyrolysis smoke are retrieved following the developed algorithm for inverting optical measurements. The real part of the refractive index is found to be in the vicinity of n = 1.55, and the imaginary part is in the range 0.007 < kappa < 0.009; the mean radius of fine particles varies in the narrow range 0.137-0.146 mu m. During smoke aging, the particle ensemble-mean radius monotonically increased from 0.19 to 0.6 mu m mainly due to a relative increase in the content of coarse aerosol. Results of this work are important for estimation of the radiative forcing of aerosol and improvement of climate models and algorithms of remote optical sounding.
We reviewed the potential of silicon (Si)-rich biochars (sichars) as crop amendments for pest and pathogen control. The main pathosystems that emerged from our systematic literature search were bacterial wilt on solanaceous crops (mainly tomato, pepper, tobacco and eggplant), piercing-sucking hemipteran pests and soilborne fungi on gramineous crops (mainly rice and wheat), and parasitic nematodes on other crops. The major pest and pathogen mitigation pathways identified were: i) Si-based physical barriers; ii) Induction of plant defenses; iii) Enhancement of plant-beneficial/pathogen-antagonistic soil microflora in the case of root nema-todes; iv) Alteration of soil physical-chemical properties resulting in Eh-pH conditions unfavorable to root nematodes; v) Alteration of soil physical-chemical properties resulting in Eh-pH, bulk density and/or water holding capacity favorable to plant growth , resulting tolerance to necrotrophic pathogens; vi) Increased Si uptake resulting in reduced plant quality, owing to reduced nitrogen intake towards some hemi-biotrophic pests or pathogens. Our review highlighted synergies between pathways and tradeoffs between others, depending, inter alia, on: i) crop type (notably whether Si-accumulating or not); ii) pest/pathogen type (e.g. below-ground/ root-damaging vs above-ground/aerial part-damaging; biotrophic vs necrotrophic sensu lato, corre-sponding systemic resistance pathways; thriving Eh-pH spectrum; etc.); iii) soil type. Our review also stressed the need for further research on: i) the contribution of Si and other physical-chemical characteristics of biochars (including potential antagonistic effects); ii) the pyrolysis process to a) optimize Si availability in the soil and its uptake by the crop and b) to minimize formation of harmful compounds e.g. cristobalite; iii) on the optimal form of biochar, e.g. Si-nano particles on the surface of the biochar, micron-sized biochar-based compound fertilizer vs larger biochar porous matrices.
Brown carbon (BrC), known as light-absorbing organic aerosol in the near-ultraviolet (UV) and short visible region, plays a significant role in the global and regional climate change. A detailed understanding of the spectral optical properties of BrC is beneficial for reducing the uncertainty in radiative forcing calculation. In this work, the spectral properties of primary BrC were investigated by using a four-wavelength broadband cavity-enhanced albedometer with central wavelengths at 365, 405, 532 and 660 nm. The BrC samples were generated by the pyrolysis of three types of wood. During the pyrolysis process, the measured average single scattering albedo (SSA) at 365 nm was about 0.66 to 0.86, where the average absorption angstrom ngstrom exponent (AAE) was between 5.8 and 7.8, and the average extinction angstrom ngstrom exponent (EAE) was within 2.1 to 3.5. The full spectral measurement of SSA (300-700 nm) was realized by an optical retrieval method and the retrieved SSA spectrum was directly applied to evaluate aerosol direct radiative forcing (DRF) efficiency. The DRF efficiency over ground of various primary BrC emissions increased from 5.3 % to 68 % as compared to the non-absorbing organic aerosol assumption. A decrease of about 35 % in SSA would cause the DRF efficiency over ground to change from cooling effect to warming effect (from -0.33 W/m2 to +0.15 W/m2) in the near-UV band (365-405 nm). The DRF efficiency over ground of strongly absorptive primary BrC (lower SSA) contributed 66 % more than weakly absorptive primary BrC (higher SSA). These findings proved the importance of broadband spectral properties of BrC, which are substantial for radiative forcing evaluation of BrC and should be considered in global climate models.
Portable aethalometers are commonly used for online measurements of light-absorbing carbonaceous particles (LAC). However, they require strict calibration. In this study, the performance of a micro-aethalometer (MA200 with polytetrafluoroethylene filter) in charactering brown carbon aerosol (BrC) absorption was evaluated in comparison with reference materials and techniques that included bulk solution absorbance and Mie-theory based particle extinction retrieval via broadband cavity enhanced spectrometer (BBCES). Continuous-wavelength resolved (300-650 nm) imaginary refractive index (k(BrC)) was derived with these methods for various BrC proxies and standard materials representing a wide range of sources and absorbing abilities, including the strongly absorbing nigrosin, pahokee peat fluvic acid (PPFA), tar aerosol from wood pyrolysis, humic-like substance (HULIS) separated from wood smoldering burning emissions, and secondary organic aerosols (SOA) from photochemical oxidation of indole and naphthalene in the presence of NOx. The BrC and nigrosin optical results by bulk solution absorption are comparable with the properties retrieved from BBCES. The MA200 raw measurements provide reliable absorption Angstrom exponent (AAE) but overestimate kBrC largely. The parameterized overestimates against reference methods depend on light absorption strength, so that the MA200 overestimates more for the less absorbing BrC. The correction factor for MA200 can be expressed well as an exponential function of kBrC or particle single scattering albedo (SSA), and also as a power-law function of the MA200 raw results derived BrC mass absorption efficiency (MAE). The ensemble correction factor regressed for all these BrC and nigrosin is 2.8 based on bulk absorption and 2.7 using BBCES result as reference. Simple radiative forcing (SRF) calculations for different scenarios using the correction for MA200, show consistent SRF when using the aethalometer results after the k(BrC)-dependent correction. (C) 2021 Elsevier B.V. All rights reserved.