共检索到 3

Landslides are one of the most hazardous geological processes due to their difficult-to-predict nature and destructive effects, often leading to significant loss of life, infrastructure damage, and environmental disruption. In the Southern Andes of Chile, landslides are particularly frequent and destructive due to a combination of factors, including high seismic activity, steep topography, and the presence of weak, unconsolidated pyroclastic soils. Unfortunately, the geomechanical control of landslide initiation in the Southern Andes is still poorly understood, creating a significant source of uncertainty in developing accurate landslide susceptibility or risk models. This study evaluates the geological and geotechnical factors that control the generation of landslides in pyroclastic soils using in situ data, laboratory analysis and remote sensing approaches. The study area covers the surroundings of the Mocho-Choshuenco Volcanic Complex (MCVC), one of the most explosive volcanoes in the Southern Andes. The results show that the landslides are placed on slopes covered by multiple explosive eruptions that include a period of more than 12 ka. Landslide activity is related to pyroclastic soils with significant weathering and halloysite content. In addition, the geotechnical characteristics show very light soils, with highwater retention capacity, which is vital to induce mechanical instability. The detected deformation may be associated with seasonal precipitation that would increase the pore water pressure and reduce the shear strength of the soil, promoting slow-moving landslides. The geological and geotechnical characteristics of the soils suggests that slow-moving landslides would be extended to a large part of the Southern Andes. Finally, this study contributes to improving hazard assessment to mitigate the impact of landslides on the population, infrastructures and natural resources in the Southern Andes.

期刊论文 2025-05-01 DOI: 10.1016/j.jsames.2025.105469 ISSN: 0895-9811

Rainfall infiltration plays a crucial role in the near-surface response of soils, influencing other hydrological processes (such as surface and subsurface runoff, groundwater dynamics), and thus determining hydro-geomorphological risk assessment and the water resources management policies. In this study, we investigate the infiltration processes in pyroclastic soils of the Campania region, Southern Italy, by combining measured in situ data, physical laboratory model observations and a 3D physically based hydrological model. First, we validate the numerical model against the soil pore water pressure and soil moisture measured at several points in a small-scale flume of a layered pyroclastic deposit during an infiltration test. The objective is to (i) understand and reproduce the physical processes involved in infiltration in layered volcanoclastic slope and (ii) evaluate the ability of the model to reproduce the measured data and the observed subsurface flow patterns and saturation mechanism. Second, we setup the model on the real site where soil samples were collected and simulate the 3D hydrological response of the hillslope. The aim is to understand and model the dynamics of hydrological processes captured by the field observations and explain the redistribution of water in different layers during 2 years of precipitation. For both applications, a Monte Carlo analysis has been performed to account for the hydrological parameter uncertainty. Results show the capability of the model to reproduce the observations in both applications, with mean KGE of 0.84 and 0.68 for pressure and soil moisture data in the laboratory, and 0.83 and 0.55 in the real site. Our results are significant not only because they provide insight into understanding and simulating infiltration processes in layered pyroclastic slopes but also because they may provide the basis for improving geohazard assessment systems, which are expected to increase, especially in the context of a warming climate. Combining physical model and in situ measurements of soil water content and soil water pressure together with a 3D hydrological models, we detailed and disentangled the infiltrations processes trough layered pyroclastic soils. The finding will be relevant for accurate geo-hydro risk management in a changing climate. image

期刊论文 2024-08-01 DOI: 10.1002/hyp.15257 ISSN: 0885-6087

Air-fall pyroclastic soil deposits usually display a loose fabric composed of alternating layers of ashes and pumices. Such deposits, when lying on steep slopes, represent a major geohazard due to the occurrence of landslides. This is the case of the carbonate massifs in Campania (southern Italy), a wide landslide-prone area of approximately 400 km2 covered with pyroclastic soils. In such cohesionless deposits, the additional shear strength provided by soil suction in unsaturated conditions is important for ensuring slope stability and can be jeopardized by soil wetting during rainwater infiltration. This paper provides a comprehensive view of the hydraulic and shear strength characteristics of different layers of pyroclastic deposits at different sites in Campania, revealing a broad view of their similarities and differences. To that end, some datasets from previous studies and novel data are gathered, linking the index properties, the hydraulic behavior of the soils and the contribution of suction to the shear strength of the studied materials. Two types of ashes at different positions within the stratigraphic sequence are identified: ashes interbedded between pumice layers, where landslide failure surfaces usually occur, and altered ashes in contact with the bedrock, which affects water leakage from the overlying soil profile. The former show quite uniform characteristics, and this allowed testing some predictive models for the assessment of the unsaturated shear strength of pyroclastic ashes in the absence of direct measurements. In contrast, the latter may exhibit significantly different behaviors, with great variability in hydraulic and mechanical properties.

期刊论文 2024-07-01 DOI: 10.1007/s10064-024-03783-x ISSN: 1435-9529
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页