共检索到 8

Silicon nanoparticles (SiNPs) have emerged as multifunctional tools in sustainable agriculture, demonstrating significant efficacy in promoting crop growth and enhancing plant resilience against diverse biotic and abiotic stresses. Although their ability to strengthen antioxidant defense systems and activate systemic immune responses is well documented, the fundamental mechanisms driving these benefits remain unclear. This review synthesizes emerging evidence to propose an innovative paradigm: SiNPs remodel plant redox signaling networks and stress adaptation mechanisms by forming protein coronas through apoplastic protein adsorption. We hypothesize that extracellular SiNPs may elevate apoplastic reactive oxygen species (ROS) levels by adsorbing and inhibiting antioxidant enzymes, thereby enhancing intracellular redox buffering capacity and activating salicylic acid (SA)-dependent defense pathways. Conversely, smaller SiNPs infiltrating symplastic compartments risk oxidative damage due to direct suppression of cytoplasmic antioxidant systems. Additionally, SiNPs may indirectly influence heavy metal transporter activity through redox state regulation and broadly modulate plant physiological functions via transcription factor regulatory networks. Critical knowledge gaps persist regarding the dynamic composition of protein coronas under varying environmental conditions and their transgenerational impacts. By integrating existing mechanisms of SiNPs, this review provides insights and potential strategies for developing novel agrochemicals and stress-resistant crops.

期刊论文 2025-05-27 DOI: 10.3390/plants14111630 ISSN: 2223-7747

Antimony (Sb) is a potential threat to living organisms, but very little is known on strategies manage its toxicity in plants. This study aimed to clarify the role of Fe on alleviation Sb toxicity in a metallicolous population of Salvia spinose and its mechanisms. With regard to the toxicity of Sb in plants and the importance of Fe potential in alleviation of Sb toxicity, S. spinosa was treated with 0 and 27 mg l- 1 Sb (III or V) along with 0, 50 and 300 mu M FeEDTA in a hydroponic system. The plants exposure to iron minimized the uptake of both Sb species by Salvia roots. The limitation of H2O2 generation in response to co-application of Fe with Sb was followed by counterbalancing the antioxidant enzymes (e.g. catalase, superoxide dismutase and ascorbate peroxidase), phenols, flavonoids, lipid membrane preservation, and increase of the carbohydrates and proteins contents, which altogether improved growth in Sb-stressed plants. The Sb (III) toxicity to plants was much higher than Sb (V), but 300 mu M Fe was significantly efficient in reducing Sb damages to Salvia. Altogether, application of Fe could efficiently alleviate the physiological and morphological functions in Sb-stressed Salvia.

期刊论文 2025-02-01 DOI: 10.1016/j.ecoenv.2025.117852 ISSN: 0147-6513

Main conclusionRhizobacteria and silicon fertilization synergism suppress leaf and panicle Blast, and mitigates biotic stress in rice plants.AbstractAssociation of bioagents and silicon is synergistic for mitigating leaf and panicle blast and low phosphorus (P) levels in upland rice, under greenhouse conditions. This study aimed to evaluate the potential of the bioagents and silicon interaction on blast disease severity suppression in upland rice plants, under field low P conditions. The experiment was conducted during two growing seasons (E1 and E2), in randomized block design with four replications, and consisted of five treatments, combining a mix of three rhizobacteria, BRM 32114 and BRM62523 (Serratia marcescens), and BRM32110 (Bacillus toyonensis), and three application methods (seed treatment, drenching, spraying). Calcium and magnesium silicate (2 t/ha) was applied over a low soil P, 30 days before sowing. Leaf blast (LBS) and panicle blast (PBS), area under the disease progress curve (AUDPC), activity of enzymes related to oxidative stress, pathogenesis-related (PR), biochemical indicators such as hydrogen peroxide, chlorophyll a and b, carotenoids, and grain yield (GY), were assessed. Bioagents and silicon suppressed LBS by 77.93 and PBS by 62.37%, reduced AUDPC by 77.3 (LBS) and 60.6% (PBS). The yield in E1 was 25% higher than in E2. The treatments statistically differ only in E2, the yield with bioagents and silicon (2435.72 kg ha-1) was 71.95% higher compared to the absolute control. All enzymatic activities related to oxidative stress and PR proteins were modulated by bioagents and silicon association. The association of rhizobacteria and silicon exhibited a synergistic effect, and represents a bioprotective combination to reduce the effects of different stresses and indirectly reduces the use of chemical inputs.

期刊论文 2025-01-01 DOI: 10.1007/s00425-024-04598-6 ISSN: 0032-0935

Drought is one of the main abiotic stresses affecting plant growth and development. Reduced plant yield and quality are primarily caused by the reductions in photosynthesis, mineral uptake, metabolic disorders, damages from the increased production of reactive oxygen species, and many other disruptions. Plants utilize drought resistance mechanisms as a defense strategy, and the systems' activation is dependent upon several factors, including plant genotype, onthogenesis phase, drought intensity and duration, and the season in which the drought occurs. Impatiens walleriana is a worldwide popular flowering plant recognized for its vibrant flower colors, and is an indispensable plant in pots, gardens and other public areas. It prefers well-draining, moisturized soil, and does not perform well in overly dry or waterlogged conditions. Consequently, inadequate water supply is a common problem for this plant during production, transportation, and market placement, which has a substantial impact on plant performance overall. This review article outlines certain features of morphological, physiological, and molecular alterations induced by drought in ornamental, drought-sensitive plant species I. walleriana, as well as research carried out to date with the aim to improve the drought tolerance. Stress proteins aquaporins and dehydrins, whose molecular structure was described for the first time in this plant species, are highlighted specifically for their role in drought stress. Furthermore, the effective improvement of drought tolerance in I. walleriana by exogenous application of Plant Growth Regulators and Plant Growth-Promoting Bacteria is discussed in detail. Finally, this review can provide valuable insights for improving plant resilience and productivity in the face of water scarcity, which is critical for sustainable agriculture and horticulture.

期刊论文 2024-09-01 DOI: 10.3390/horticulturae10090903

Thaumatin-like proteins (TLPs), including osmotins, are multifunctional proteins related to plant biotic and abiotic stress responses. TLPs are often present as large multigene families. Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used in both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline-alkaline soils and drought are two major abiotic stress factors significantly affecting the distribution of tropical coastal plants. The expression of stress resistance genes would help to alleviate the cellular damage caused by abiotic stress factors such as high temperature, salinity-alkalinity, and drought. This study aimed to better understand the functions of TLPs in the natural ecological adaptability of T. tetragonoides to harsh habitats. In the present study, we used bioinformatics approaches to identify 37 TtTLP genes as gene family members in the T. tetragonoides genome, with the purpose of understanding their roles in different developmental processes and the adaptation to harsh growth conditions in tropical coral regions. All of the TtTLPs were irregularly distributed across 32 chromosomes, and these gene family members were examined for conserved motifs of their coding proteins and gene structure. Expression analysis based on RNA sequencing and subsequent qRT-PCR showed that the transcripts of some TtTLPs were decreased or accumulated with tissue specificity, and under environmental stress challenges, multiple TtTLPs exhibited changeable expression patterns at short (2 h), long (48 h), or both stages. The expression pattern changes in TtTLPs provided a more comprehensive overview of this gene family being involved in multiple abiotic stress responses. Furthermore, several TtTLP genes were cloned and functionally identified using the yeast expression system. These findings not only increase our understanding of the role that TLPs play in mediating halophyte adaptation to extreme environments but also improve our knowledge of plant TLP evolution. This study also provides a basis and reference for future research on the roles of plant TLPs in stress tolerance and ecological environment suitability.

期刊论文 2024-09-01 DOI: 10.3390/plants13172355 ISSN: 2223-7747

The production of biodegradable gluten-based protein foams showing complete natural degradation in soil after 26 days is reported, as an alternative to commercial foams in disposable sanitary articles that rely on non- biodegradable materials. The foams were developed from an extensive evaluation of different foaming methodologies (oven expansion, compression moulding, and extrusion), resulting in low-density foams (ca. 400 kg/ m3) 3 ) with homogenous pore size distributions. The products showed the ability to absorb 3-4 times their weight, reaching ranges for their use as absorbents in single-use disposable sanitary articles. An additional innovative contribution is that these gluten foams were made from natural and non-toxic wheat protein, glycerol, sodium and ammonium bicarbonate, making them useful as fossil-plastic-free replacements for commercial products without the risk of having micro-plastic and chemical pollution. The impact of different processing conditions on forming the porous biopolymer network is explained, i.e., temperature, pressure, and extensive shear forces, which were also investigated for different pH/chemical conditions. The development of micro-plastic-free foams mitigating environmental pollution and waste while using industrial co-products is fundamental for developing large-scale production of single-use items. A sanitary pad prototype is demonstrated as an eco-friendly material alternative that paves the way for sustainable practices in manufacturing, and contributes to the global effort in combating plastic pollution and waste management challenges, Sustainable Development Goals: 12, 13, 14, and 15.

期刊论文 2024-06-25 DOI: 10.1016/j.jclepro.2024.142419 ISSN: 0959-6526

High bicarbonate concentration in the soil induces iron (Fe) deficiency in fruit trees. According to the promising performance of nanomaterials in supplying mineral nutrients, in this study the potential of 4 green synthesized Fe nano-complexes (Fe-NCs) on alleviating bicarbonate stress in almond trees was evaluated in a soilless culture. The Fe-NCs were formed on extracts of husks of almond, pistachio, walnut, and pomegranate and their efficiency in Fe supply was compared to a commercial FeEDDHA fertilizer. The bicarbonate stress was imposed by adding sodium bicarbonate + calcium carbonate to the Hoagland's nutrient solution: Control (without sodium bicarbonate + calcium carbonate); 10 mM NaHCO3+5 mM CaCO3; 20 mM NaHCO3+10 mM CaCO3. The plants were irrigated with nutrient solutions containing different concentrations of bicarbonate and different sources of Fe for 120 days. Bicarbonate stress induced chlorophyll decline, proline accumulation and leaf necrosis, and decreased leaf area. These responses were in line with decline in Fe concentration and development of oxidative damage in leaves, as hydrogen peroxide accumulation and membrane stability index decline were observed in the bicarbonatestressed plants. Although walnut-nFe and pistachio-nFe intensified these adverse effects of bicarbonate stress, the almond-nFe and pomegranate-nFe recovered chlorophyll concentration, alleviated the oxidative damage, and restored Fe in the plants to the range of FeEDDHA under bicarbonate stress. Alleviating the damages was related to retrieving the concentration of proteins, hydrogen peroxide detoxification, and catalase activity in the leaves. These findings uncovered the potential of green synthesized almond-nFe and pomegranate-nFe as low-cost and effective Fe sources under bicarbonate stress.

期刊论文 2024-02-15 DOI: 10.1016/j.heliyon.2024.e25322

Camellia semiserrata is an important woody edible oil tree species in southern China that is characterized by large fruits and seed kernels with high oil contents. Increasing soil acidification due to increased use of fossil fuels, misuse of acidic fertilizers, and irrational farming practices has led to leaching of aluminum (Al) in the form of free Al3+, Al(OH)(2)(+), and Al(OH)(2+), which inhibits the growth and development of C. semiserrata in South China. To investigate the mechanism underlying C. semiserrata responses to Al stress, we determined the changes in photosynthetic parameters, antioxidant enzyme activities, and osmoregulatory substance contents of C. semiserrata leaves under different concentrations of Al stress treatments (0, 1, 2, 3, and 4 mmol/L Alcl(3)) using a combination of physiological and proteomics approaches. In addition, we identified the differentially expressed proteins (DEPs) under 0 (CK or GNR0), 2 mmol/L (GNR2), and 4 mmol/L (GNR4) Al stress using a 4D-label-free technique. With increasing stress concentration, the photosynthetic indexes of C. semiserrata leaves, peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), soluble protein (SP), and soluble sugar (SS) showed an overall trend of increasing and then decreasing, and proline (Pro) and malondialdehyde (MDA) contents tended to continuously increase overall. Compared with the control group, we identified 124 and 192 DEPs in GNR2 and GNR4, respectively, which were mainly involved in metabolic processes such as photosynthesis, flavonoid metabolism, oxidative stress response, energy and carbohydrate metabolism, and signal transduction. At 2 mmol/L Al stress, carbon metabolism, amino sugar and nucleotide sugar metabolism, and flavonoid metabolism-related proteins were significantly changed, and when the stress was increased to 4 mmol/L Al, the cells accumulated reactive oxygen species (ROS) at a rate exceeding the antioxidant system scavenging capacity. To deal with this change, C. semiserrata leaves enhanced their glutathione metabolism, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, and other metabolic processes to counteract peroxidative damage to the cytoplasmic membrane caused by stress. In addition, we found that C. semiserrata resisted aluminum toxicity mainly by synthesizing anthocyanidins under 2 mmol/L stress, whereas proanthocyanidins were alleviated by the generation of proanthocyanidins under 4 mmol/L stress, which may be a special mechanism by which C. semiserrata responds to different concentrations of aluminum stress.

期刊论文 2024-01-01 DOI: 10.3390/genes15010055
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页