Ensuring the stability of the surrounding rock mass is of great importance during the construction of a large underground powerhouse. The presence of unfavorable structural planes within the rock mass, such as faults, can lead to substantial deformation and subsequent collapse. A series of in situ experiments and discrete element numerical simulations have been conducted to gain insight into the progressive failure behavior and deformation response of rocks in relation to controlled collapse scenarios involving gently inclined faults. First, the unloading damage evolution process of the surrounding rock mass is characterized by microscopic analysis using microseismic (MS) data. Second, the moment tensor inversion method is used to elucidate the temporal distribution of MS event fracture types in the surrounding rock mass. During the development stage of the collapse, numerous tensile fracture events occur, while a few shear fractures corresponding to structural plane dislocation precede their occurrence. The use of the digital panoramic borehole camera, acoustic wave test, and numerical simulation revealed that gently inclined faults and deep cracks at a certain depth from the cavern periphery are the primary factors contributing to rock collapse. These results provide a valuable case study that can help anticipate and mitigate fault-slip collapse incidents while providing practical insights for underground cave excavation. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Surrounding rock deterioration and large deformation have always been a significant difficulty in designing and constructing tunnels in soft rock. The key lies in real-time perception and quantitative assessment of the damaged area around the tunnel. An in situ microseismic (MS) monitoring system is established in the plateau soft tock tunnel. This technique facilitates spatiotemporal monitoring of the rock mass's fracturing expansion and squeezing deformation, which agree well with field convergence deformation results. The formation mechanisms of progressive failure evolution of soft rock tunnels were discussed and analyzed with MS data and numerical results. The results demonstrate that: (1) Localized stress concentration and layered rock result in significant asymmetry in micro-fractures propagation in the tunnel radial section. As excavation continues, the fracture extension area extends into the deep surrounding rockmass on the east side affected by the weak bedding; (2) Tunnel excavation and longterm deformation can induce tensile shear action on the rock mass, vertical tension fractures (account for 45%) exist in deep rockmass, which play a crucial role in controlling the macroscopic failure of surrounding rock; and (3) Based on the radiated MS energy, a three-dimensional model was created to visualize the damage zone of the tunnel surrounding rock. The model depicted varying degrees of damage, and three high damage zones were identified. Generally, the depth of high damage zone ranged from 4 m to 12 m. This study may be a valuable reference for the warning and controlling of large deformations in similar projects. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).