共检索到 2

To investigate the effect of interface temperature on the soil-reinforcement interaction mechanism, a series of pullout tests were conducted considering different types of reinforcement (geogrid and non-woven geotextile), backfill (dry sand, wet sand, and clay), and six interface temperatures. The test results indicate that at interface temperatures of 0 degrees C and above, reinforcement failure didn't occur during the pullout tests, whereas it predominantly occurred at subzero temperatures. Besides, the pullout resistance for the same soil-reinforcement interface gradually decreased as the interface temperature rose. At a given positive interface temperature, the pullout resistance between wet sand and reinforcement was significantly higher than that of the clayreinforcement interface but lower than that of the dry sand-reinforcement interface. Compared with geotextile reinforcements, geogrids were more difficult to pull out under the same interface temperature and backfill conditions. In addition, the lag effect in the transfer of tensile forces within the reinforcements was significantly influenced by the type of soil-reinforcement interface and the interface temperature. Finally, the progressive deformation mechanism along the reinforcement length at different interface temperatures was analyzed based on the strain distribution in the reinforcement.

期刊论文 2025-12-01 DOI: 10.1016/j.geotexmem.2025.06.002 ISSN: 0266-1144

Colluvial landslides develop in loose Quaternary deposits, with deformation generally being progressive and crack development dominant in the sliding mass surface layer. With the Tanjiawan landslide in the Three Gorges Reservoir (China) as a case study, field investigations, deformation monitoring, and groundwater level monitoring data were integrated to analyze the landslide deformation characteristics and elucidate the influence of cracks on its deformation. We used numerical simulations, including the finite element and discrete element methods, for investigating the progressive deformation mechanism of rainfall-triggered landslides in the accumulation layer and predicting the failure process. The results indicated that crack formation instigated a preferential seepage channel in the shallow layer of the sliding mass, rainfall infiltration along cracks generated water pressure, and the landslide gradually morphed from a stable into a step-like progressive deformation state. Preferential flow inside the cracks effectively elevated the groundwater level within the landslide, and either the number or depth of cracks significantly affected the groundwater seepage field, thereby influencing slide stability. Geological conditions controlled the deformation and failure processes of each landslide section. The uplifted bedrock on the right side blocked the sliding process of the rear sliding mass, and the middle and front sliding masses moved faster but the sliding distance was shorter. The deformation trend is deformation, crack formation, preferential flow occurrence, crack extension, and deformation. The ultimate cause of failure was a steep rise in groundwater level following short duration heavy rainfall or long duration light rainfall.

期刊论文 2024-12-01 DOI: 10.1007/s10346-024-02344-3 ISSN: 1612-510X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页