共检索到 81

Root-knot nematodes (RKN) are globally distributed and highly pathogenic. By determining the threshold at which damage occurs, we can create effective measures to protect plants from nematodes. In our study, we investigated the impact of ten initial population densities (Pi-log series) of M. javanica, i.e., 0, 2.38, 2.68, 2.98, 3.28, 3.58, 3.88, 4.18, 4.48 and 4.78 juveniles (J2) g(-1) soil on tomato cv. S22 plants in pots. The graphical estimation of yield losses caused by RKN was calculated using Seinhorst's yield loss model based on the relationship between the RKN population and damage to tomato plants. The relationship between initial nematode population density (Pi) and plant yield was analyzed using Seinhorst's model, where T is the tolerance limit, m is the minimum yield, and z is a constant describing yield decline. This allowed us to determine the threshold at which nematode infestation significantly reduces tomato growth. Seinhorst's model, y = m + (1-m) 0.95(Pi/T-1) for Pi > T; y = 1 for Pi <= T for RKN, was fitted to the data of shoot length and fresh weight of infected and uninoculated control plants to estimate the damage threshold level. The impact of M. javanica on plant physiological parameters, including chlorophyll content, carotenoid and nitrate reductase activity, root-gall formation, and disease incidence, was also determined in this study. The tolerance limits for relative tomato shoot length and fresh weight were 3.34 J2 of M. javanica g(-1) soil. The minimum relative values (y(m)) for shoot length and fresh weights were 0.39 and 0.42, respectively. We found that the damage threshold level was between 3.28 and 3.58. The root galls index, nematode population and reproduction factors were 3.75, 113 and 29.42, respectively, at an initial population density (Pi) of 3.58 J2 g(-1) soil. The chlorophyll (0.43 mg g(-1)), carotenoids (0.06 mg g(-1)) and nitrate reductase activity (0.21 mu mol min(-1) g(-1)). Our study highlights the importance of the accurate estimation of damage thresholds, which can guide timely and effective nematode management strategies.

期刊论文 2025-09-01 DOI: 10.1016/j.pmpp.2025.102754 ISSN: 0885-5765

The rapid growth of the global population and the transformation and upgrading of dietary structures have led to a widening gap in the demand for cropland resources. Research on agricultural land reallocation that seeks to maximize cropland availability and increase grain production while also considering the preservation of natural ecosystems still has gaps. Following the theoretical assumptions of the agricultural land reallocation process, this study constructs a comprehensive framework for integrating scale, structure, and prioritization. Sichuan Province, China's main grain-producing region, is used as an example for a case study. The results demonstrate that the scale of agricultural land reallocation decreased from 56,742.01 to 44,965.52 km2 after correcting the evaluation of ecological conservation importance and crop production suitability under spatial and non-spatial constraints. There are significant differences in crop production suitability for agricultural land reallocation structures. Despite the wide spatial distribution of forest land, its utilization is challenging. Therefore, cropland, garden land, and grassland are prioritized for exploitation and utilization. In the eight priority zones for agricultural land reallocation, the main obstacles are constituted by single or composite factors of utilization convenience, spatial agglomeration, and facility stability. In general, agricultural land reallocation needs to be supported by considering different dimensions of resource availability, structural convertibility, and spatial compatibility. This approach maximizes the availability of resources for grain production while minimizing damage to natural ecosystems.

期刊论文 2025-06-19 DOI: 10.1002/ldr.5675 ISSN: 1085-3278

Research on urban flood risk has highlighted the need for more comprehensive flood risk assessments in low-income and vulnerable communities. This study aims to examine the causes, impacts and existing flood risk management measures in the Somali region of Ethiopia. The study used a mixed research methodology, including a cross-sectional survey, to collect original qualitative and quantitative data.. In addition to flood risk and vulnerability assessment, the study evaluated urban flood risk management measures through soil protection service curve number, production distribution network and supply chain risk management methods.The results suggest that flooding in Dolo-Ado is increasing due to heavy rainfall and flooding, as well as inadequate flood control measures and geographical location. Soil Conservation Service Curve Number analysis shows that the arid landscape of Dolo-ado is predominantly shrub and barren with significant differences in land cover types. The low infiltration capacity, high runoff potential and frequent heavy rainfall are the main factors contributing to the area's high soil vulnerability to flash floodsConsequently, qualitative results also confirm that this has resulted in extensive infrastructure damage, displacement, loss of livelihoods, ecosystem disruption and disruption to community life, as well as water and health problems. In addition, flood risks are more severe for vulnerable urban communities, impacting services, the economy and the environment. Therefore, inadequate preventive measures for effective supply chain management are urgent and crucial for resilience. This study implies that urban planning and policies should be changed and prioritize the integration of production distribution networks and flood risk management in the supply chain to effectively mitigate floods. Climate change-responsive and integrated urban planning, improved drainage systems, early warning, emergency planning and community engagement are critical for flood preparedness, adaptation and resilience and require further research and modeling techniques.

期刊论文 2025-06-17 DOI: 10.1007/s10668-025-06407-w ISSN: 1387-585X

Expanded Polystyrene (EPS) granular lightweight soil (ELS) is an eco-friendly material made of EPS particles, cement, soil, and water. This study investigates the modification of ELS using a silane coupling agent (SCA) solution to improve its performance. Various tests were performed, including flowability, dry shrinkage, unconfined compressive strength (UCS), triaxial, hollow torsional shear, and scanning electron microscopy (SEM) analysis, to evaluate the physical and mechanical properties at different SCA concentrations. The results show that the optimal SCA concentration was 6%, improving flowability by 13% and increasing dry shrinkage weight by 4%. The UCS increased with SCA concentration, reaching 266 and 361 kPa after 7 and 28 days, respectively, at 6% SCA. Triaxial and shear tests indicated improved shear strength, with the maximum shear strength reaching 500 kPa, internal friction angle rising by 4%, and cohesion reaching 114 kPa at 6% SCA. Hollow torsion shear tests showed that 6% SCA enhanced stiffness and resistance to deformation, while reducing the non-coaxial effect. SEM analysis revealed that SCA strengthened the bond between EPS particles and the cement matrix, improving the interfacial bond. This study highlights the potential of modified ELS for sustainable construction.

期刊论文 2025-06-12 DOI: 10.1680/jgein.24.00133 ISSN: 1072-6349

Salinity stress poses a critical threat to global crop productivity, driven by factors such as saline irrigation, low precipitation, native rock weathering, high surface evaporation, and excessive fertilizer application. This abiotic stress induces oxidative damage, osmotic imbalance, and ionic toxicity, severely affecting plant growth and leading to crop failure. Silicon (Si) has emerged as a versatile element capable of mitigating various biotic and abiotic stresses, including salinity. This review offers a comprehensive analysis of Si's multifaceted role in alleviating salinity stress, elucidating its molecular, physiological, and biochemical mechanisms in plants. It explores Si uptake, transport, and accumulation in plant tissues, emphasizing its contributions to maintaining ionic balance, enhancing water uptake, and reinforcing cell structural integrity under saline conditions. Additionally, this review addresses Si transformations in saline soils and the factors influencing its bioavailability. A significant focus is placed on silicon-solubilizing microorganisms (SSMs), which enhance Si bioavailability through mechanisms such as organic acid production, ligand exchange, mineral dissolution, and biofilm formation. By improving nutrient cycling and mitigating salinity-induced stress, SSMs offer a sustainable alternative to synthetic silicon fertilizers, promoting resilient crop production in salt-affected soils.

期刊论文 2025-06-01 DOI: 10.1016/j.stress.2025.100825 ISSN: 2667-064X

Among the abiotic stresses, water stress is a key factor that limits agricultural productivity worldwide by reducing crop yield through numerous biochemical and physiological disruptions. The use of nanomaterials in commercially available products is rapidly expanding, with significant applications in agriculture and phytoremediation. Current advancements in nanotechnology have introduced iron nanoparticles (Fe-NPs) as a promising approach to enhance crop resilience against stress conditions. Iron (Fe) plays a critical role in photosynthesis, enzyme activation, chlorophyll synthesis, and oxidative stress management, which are pivotal to plant response against water stress. Due to high surface area, small size, and controlled reactivity, Fe-NPs exhibit exceptional advantages over traditional Fe sources, viz., improved bioavailability and nutrient uptake. The current review explores Fe-NP's potential to mitigate the adverse effects of water stress in crop plants by activating various beneficial mechanisms, including improvement in antioxidant defence, osmotic adjustment, and modulating stress related to phytohormones. Particularly, Fe-NPs improve water use efficiency (WUE) and root development, facilitating water and nutrient uptake under stress conditions. Moreover, Fe-NPs assist in antioxidant enzyme regulation, which reduces the accumulation of reactive oxygen species (ROS), thereby reducing oxidative damage and sustaining the metabolic activities of plants under limited water availability. However, FeNP use in agriculture poses potential health and environmental risks, including water and soil contamination, soil microbial alteration, and residues in edible crop plants, which require careful consideration. Furthermore, Fe-NP effectiveness may vary depending on factors, viz., size of nanoparticles (NPs), concentration, method of application, and crop type. The paper concludes by discussing potential research avenues, highlighting the necessity of sustainable application methods, optimal Fe-NP formulations, and thorough environmental effect evaluations. Fe-NPs are a promising element in creating next-generation, nano-enabled farming techniques meant to increase crop resistance to water stress, which could ultimately improve food security in the face of a changing climate.

期刊论文 2025-06-01 DOI: 10.1016/j.stress.2025.100905 ISSN: 2667-064X

Intensive agriculture development and achievement to higher profitability has inflicted permanent damage on agroecosystems. Rapid deterioration of structure and functional properties in agroecosystems has intensified the need for research on agroecosystem health and management. To assess the health status of wheat agroecosystems in the agricultural lands of Bandar-e-Turkmen county (Golestan province, Iran), we were used the variables of weed and natural enemies biodiversity, soil health (carbon and organic matter, microbial respiration, earthworm, soil salinity, and acidity), environmental indexes (environmental effects of pesticides (EIQ) and nitrate leaching) and vegetation indexes (RVI, cultivar type, and grain yield). In this study, thematic layers were prepared in ArcGIS and overlayed according to three scenarios. Then final layer was classified into three classes of health. Based on the results, only 8.47% (5 fields) were located in the first health class. These fields were characterized by high grain yield, low weed biodiversity, minimal pesticides use, optimal soil conditions, high RVI, and the presence of earthworms and natural enemies. Also, we found that 42 fields (71.19%) were placed in the second health class. Increase of biodiversity and population of weeds, lower grain yield, and reducing the quantity and quality of soil variables were important factors that reduced the health degree of these fields. Based on the results, 20.34% of the area (12 fields) in the central and western parts of the county was placed in the unhealthy class. It seems that increasing the environmental restrictions, including salinity higher than 6 ds/m, high weed diversity, increasing the consumption of harmful and dangerous pesticides with high environmental impact, and less grain yield than the potential of cultivars, were the main reasons for placing these fields in the unhealthy class. Also, the most important factors of decreasing the health degree of fields, frequency of weeds, increasing consumption of chemical pesticides, low soil organic matter, absence of earthworms, and decreasing grain yield were identified. Generally, management of weeds, implementation of crop rotation, preservation of plant residues on the soil surface, and development of conservation agriculture can help to improve the health indicators of wheat agroecosystems.

期刊论文 2025-05-25 DOI: 10.1038/s41598-025-03443-4 ISSN: 2045-2322

Root-lesion nematodes, particularly Pratylenchus neglectus and P. crenatus (PNC), are widely distributed in New Zealand and cause significant damage to maize roots, reducing crop productivity. Despite their economic importance, no comprehensive assessment of commercial maize hybrids' resistance to PNC has been conducted in the country. Significant variation was observed in the nematode reproduction factor (Rf) and final population (Pf) among hybrids. In Experiment 1 (initial population (Pi) = 1250 PNC kg(-)(1) soil), Rf ranged from 3.1 in hybrid P8500 to 7.1 in hybrid P9127, with Pf values ranging from 3863 to 8903 PNC kg(-)(1) soil + roots in 45 days. In Experiment 2 (Pi = 750 PNC kg(-)(1) soil), Rf ranged from 18.4 in hybrid P1613 to 37.5 in hybrid P8805, with Pf values from 13,784 to 28,426 PNC kg(-)(1) soil + roots in 60 days. These results indicate active nematode reproduction and substantial hybrid-dependent variation in host response. Experiment 3 examined the impact of varying initial inoculum densities (500, 1000 and 1500 PNC kg(-)(1) soil), showing a dose-dependent increase in Pf and corresponding root damage. Susceptible hybrid (P9127) exhibited up to 42% root dry weight and 22% shoot dry weight reductions. This study is the first systematic evaluation of PNC resistance in New Zealand maize hybrids. It identifies P9127 and P8805 as highly susceptible, and P0891, P8500, and P1613 as moderately resistant. These findings offer valuable benchmarks for future breeding and support nematode management in New Zealand.

期刊论文 2025-05-07 DOI: 10.1007/s13313-025-01050-5 ISSN: 0815-3191

Spent mushroom substrate (SMS), a waste product from mushroom cultivation, in addition to being rich in essential nutrients for crop growth, contains actively growing mushroom mycelia and metabolites that suppress some plant pathogens and pests. SMS thus has potential for fostering the suppressiveness of soil-borne pathogens of farms. This study determined the potential of using the spent Pleurotus ostreatus substrate (SPoS) to suppress the plant-parasitic nematode Radopholus similis in bananas. R. similis is the most economically important nematode in bananas worldwide. The effect of SPoS on R. similis was assessed through two in vivo (potted plants) experiments between May 2023 and June 2024. Five-month-old East African highland banana (genome AAA) plantlets that are highly susceptible to R. similis were used. In the first experiment, the plantlets were established in 3 L pots containing (i) pre-sterilized soil, (ii) pre-sterilized soil inoculated with nematodes, (iii) pre-sterilized soil mixed with 30% (v/v) SPoS, (iv) pre-sterilized soil mixed with 30% (v/v) SPoS followed by nematode inoculation, (v) SPoS without soil, and (vi) SPoS without soil inoculated with nematodes. The SPoS was already decomposed; thus, it may or may not have contained active mycelia. The nematodes were introduced two weeks after the SPoS application. In the second experiment, SPoS was introduced two weeks after nematode inoculation. The SPoS treatments without soil were not evaluated in the second experiment. Both experiments were monitored over a three-month period. Each screenhouse treatment contained four plants and was replicated thrice. In the first experiment, data were collected on changes in soil nutrient content, below- and aboveground biomass, root deaths, root necrosis due to nematode damage, and R. similis population in root tissues and soil. In the second experiment, data were collected on root deaths and the number of nematodes in root tissues and the soil. The SPoS improved crop biomass yield, reduced root damage, and colonization by R. similis. The potential of SPoS to improve the management of R. similis and banana production under field conditions needs to be determined.

期刊论文 2025-04-26 DOI: 10.3390/agronomy15051040

Global demand for ecosystem services like food and clean water is increasing, and it is crucial to economically value these services for the purposes of environmental conservation, land-use planning, and the implementation of green taxes. Focusing on a monoculture wheat agroecosystem, the economic value of ecosystem services and environmental damage from different farm management types is here compared with natural ecosystems in a semi-arid region in Iran during the 2019-2020 agricultural year. Using field survey data collected from 203 wheat farms with varying management practices, we estimated the economic value of six ecosystem services, along with three environmental damages. The net value of provisioning/regulating services less environmental disservices in wheat agroecosystems was highest for farms with a conservation management system, followed (in rank order) by intensive, traditional, organic, and industrial management types. Wheat agroecosystems recorded net values of 41.94% to 66.92% below those of natural ecosystems in the region. The findings show that converting natural ecosystems into wheat agroecosystems increases the value of provisioning services (food and forage) but also substantially increases environmental costs. These costs rose linearly with the value of increases in provisioning services.

期刊论文 2025-04-15 DOI: 10.3390/land14040865
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 末页
  • 跳转
当前展示1-10条  共81条,9页