共检索到 4

Drought and soil nitrogen (N) deficiency are the limiting factors for poplar plantation productivity improvement in semi-arid regions. N addition could alleviate the growth decline of trees caused by drought; however, the effectiveness under severe drought and the underlying ecophysiological understanding remains uncertain. To further clarify the mechanisms of N addition in regulating tree biomass accumulation under different drought levels, we investigated the effects of 6 g NH4NO3 per plant addition on the carbon and N assimilation and biomass accumulation of potted poplar seedlings under moderate or severe drought (40 % or 20 % of field capacity) conditions, with a particular emphasis on carbon and N interactions. We found that under moderate drought, N addition markedly promoted the activities of antioxidases, nitrate reductase (39 %), and N concentration (56 %) in leaves, significantly alleviated the damages of the membranes and photosystem II, and increased both leaf area (69 %) and chlorophyll content per unit leaf area, along with net photosynthesis rate (34 %), thereby significantly alleviating growth restrictions. However, under severe drought, although N addition increased the accumulation of both soluble sugars and N of the whole plant, it did not ameliorate the damage to membranes and photosystem II, nor did it improve chlorophyll content, leaf area, or biomass accumulation. Therefore, N addition could increase leaf area, enhance antioxidants, and positively influence leaf carbon assimilation (0.60, p < 0.001) in poplar seedlings under moderate drought. The restrictions on leaf area and carbon assimilation were exacerbated during severe drought, which mitigated the positive effects of N addition on carbon assimilation and biomass accumulation. The findings of this study suggest that the growth of hybrid poplar can be enhanced by applying N fertilizer under mild drought conditions. In contrast, N fertilization has no significant effect in severe drought conditions.

期刊论文 2025-07-01 DOI: 10.1016/j.indcrop.2025.121040 ISSN: 0926-6690

Soil cadmium (Cd) pollution is a serious ecological problem worldwide. Understanding Cd-detoxification mechanisms in woody plants will help to evaluate their tolerance ability and phytoremediation potential to Cd-polluted soils. This study investigated the growth, physiochemistry, Cd distribution, and transcriptome sequencing of male and female poplars under three Cd levels (0, 50, and 100 mg & sdot;kg-1). The results showed that Cd stress significantly inhibited the growth of aboveground parts. Over 70 % of the Cd was distributed in the cell wall fraction of roots, stems, and leaves, with the majority accumulating in the roots. Poplars can conjugate Cd with phytochelatins to reduce Cd damage, which is more evident in males than females. The antioxidant defense system of females is more effective than that of males at reducing the damage from Cd. Females demonstrated a stronger Cd-regulation ability than males under the 100 mg & sdot;kg- 1 Cd treatment. Sex-specific responses to Cd were associated with differential gene expression. Under Cd stress, the genes related to oxidation-reduction processes, antioxidant enzyme activity and defense mechanisms, cell wall synthesis, and glutathione metabolism were mainly enriched and upregulated in females, whereas in males, genes related to photosynthesis and photosynthetic pigment biosynthesis were mainly enriched and downregulated, indicating greater damage to the photosynthetic system than in females. Our study provides novel insights into the mechanisms responding to Cd tolerance in poplars. Further studies should be carried out to assess the impact of soil Cd pollution on the wood quality of poplars.

期刊论文 2025-01-01 DOI: 10.1016/j.ecoenv.2025.117675 ISSN: 0147-6513

Nitraria sibirica Pall is a halophytic shrub growing in desert steppe zones. It exhibits extraordinary adaptability to saline-alkali soil, drought, and sand burial. In this study, the high-affinity K+ transporter NsHKT1 was identified and found to play a key role in salt tolerance in N. sibirica. NsHKT1 was used to improve salt tolerance in a poplar hybrid. The expression characteristics of NsHKT1 were analyzed by transforming Arabidopsis and poplar with the beta-glucuronidase (GUS) gene driven by the NsHKT1 promoter. The results showed that NsHKT1 expression was induced by various abiotic stresses and phytohormones. GUS expression was also detected in the reproductive organs of transgenic Arabidopsis, indicating its function in regulating plant reproductive growth. Transgenic 84 K poplar plants overexpressing NsHKT1 exhibited less damage, higher antioxidant capacity, higher chlorophyll and proline levels, and lower malondialdehyde content compared with non-transgenic plants under salt stress. These results are consistent with the salt tolerance results for transgenic Arabidopsis overexpressing NsHKT1, indicating that NsHKT1 plays a key role in salt tolerance in herbaceous and ligneous plants. Inductively coupled plasma-optical emission spectrometry showed a significantly lower leaf Na+ content in transgenic poplar than in the non-transgenic line, revealing that NsHKT1, as a member of HKT family subclass 1, was highly selective to Na+ and prevented shoot Na+ accumulation. Transcriptome analysis indicated that differentially expressed genes in transgenic poplars under salt stress were associated mainly with the isoflavonoid, cutin, suberine, wax, anthocyanin, flavonoid, and cyanoamino biosynthesis pathways, as well as the MAPK signaling pathway, indicating that NsHKT1 not only regulates ion homeostasis but also influences secondary metabolism and signal transaction in transgenic plants.

期刊论文 2024-05-01 DOI: 10.1016/j.plantsci.2024.112052 ISSN: 0168-9452

Simple Summary The study observed how plants adjust leaf turnover rates and nutrient allocation at the organ level to counter O3 damage. Various O3 treatments (ambient concentration, 1.5 x AA, 2.0 x AA) and fertilization levels (N: 0 and 80 kg N ha-1 y-1; P: 0 and 80 kg N ha-1 y-1) were applied to an O3-sensitive poplar clone in a FACE experiment. The results revealed significant effects of both fertilization and O3 on nutrient content, with increases in foliar C and N (+5.8% and +34.2%) and root Ca and Mg (+46.3% and +70.2%). Accelerated leaf turnover rates due to O3 exposure were observed, indicating its significant role in this physiological parameter. O3 fumigation influenced the overall allocation of primary and secondary elements across plant organs. These findings underscore the ecological implications of altered element allocation in plant leaves in response to elevated O3 levels.Abstract An excess of ozone (O3) is currently stressing plant ecosystems and may negatively affect the nutrient use of plants. Plants may modify leaf turnover rates and nutrient allocation at the organ level to counteract O3 damage. We investigated leaf turnover rate and allocation of primary (C, N, P, K) and secondary macronutrients (Ca, S, Mg) under various O3 treatments (ambient concentration, AA, with a daily hourly average of 35 ppb; 1.5 x AA; 2.0 x AA) and fertilization levels (N: 0 and 80 kg N ha-1 y-1; P: 0 and 80 kg N ha-1 y-1) in an O3-sensitive poplar clone (Oxford: Populus maximowiczii Henry x P. berolinensis Dippel) in a Free-Air Controlled Exposure (FACE) experiment. The results indicated that both fertilization and O3 had a significant impact on the nutrient content. Specifically, fertilization and O3 increased foliar C and N contents (+5.8% and +34.2%, respectively) and root Ca and Mg contents (+46.3% and +70.2%, respectively). Plants are known to increase the content of certain elements to mitigate the damage caused by high levels of O3. The leaf turnover rate was accelerated as a result of increased O3 exposure, indicating that O3 plays a main role in influencing this physiological parameter. A PCA result showed that O3 fumigation affected the overall allocation of primary and secondary elements depending on the organ (leaves, stems, roots). As a conclusion, such different patterns of element allocation in plant leaves in response to elevated O3 levels can have significant ecological implications.

期刊论文 2024-04-01 DOI: 10.3390/biology13040232
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页