The extensive use of non-biodegradable and petroleum derived polymers in industry exacerbates environmental problems associated with plastic waste accumulation and fossil resource depletion. The most promising solution to overcome this issue is the replacement of these polymers with biodegradable and bio-based polymers. In this paper, novel biocomposites were prepared from bio-based polyamide 5.6 (PA56) with the addition of olive stone powder (OSP) at varying weight concentrations by melt compounding method. The degradability of the prepared biocomposites is investigated through soil burial test, and assessed by reduction in their mechanical properties. The biodegradability of bio-based polyamide 5.6 is shown to be improved by addition of olive stone powder, and its effects on the properties of polymer matrix are elucidated. The Fourier transform infrared (FTIR) spectrum of the biocomposites indicate the successful incorporation of OSP into PA56 polymer matrix. After six-month soil burial test, scanning electron microscopy and FTIR show the degradation of PA56 through morphological and structural changes, respectively. Differential scanning calorimetry reveals the changes in the transition temperatures of the polymer matrix and an increase in crystallinity. Thermogravimetric analysis is used on the biocomposite to determine the fraction of its components, polymer and biofiller, and the results show that 2.67% (w/w) of the polyamide 5.6 is biodegraded at the end of the six-month soil burial.
Bearing plates made from plastic composites can be used as an alternative to their steel counterparts in rock bolt or soil nail applications. To achieve this goal, an existing recycled highdensity polyethylene bearing plate was investigated and later modified to improve its engineering properties. Laboratory studies were conducted to determine the failure load of the existing and modified plates, and a numerical model was developed for complementary analysis. The results of both efforts clearly showed that the existing bearing plate was not adequate in terms of strength and creep properties, as it quickly yielded with large displacements at relatively low loads. In order to enhance the strength of the plate, both geometric and material modifications are made by our research group to obtain a more efficient plate. Numerical models were used to determine the frame layout, and a series of analyses were performed to evaluate the effects of frame thickness, number and arrangement. Once the design was optimized and finalized, a mold was created to match the new geometry for manufacturing new plates through injection molding. A test setup was also established in the laboratory and numerous compression tests were performed on the manufactured new plates. The measured load-displacement behavior of plates made of polyethylene and polyamide with a variety of additives were discussed separately. It was determined that the new plastic plates reinforced with polyamide through various additives have the potential to reach a strength up to 200-240 kN, which is at least two times higher than the existing one, with distinct economic advantages.