共检索到 5

The mitigation of seismic soil liquefaction in sand with fine content presents a challenge, demanding efficient strategies. This research explores the efficacy of Microbial-Induced Partial Saturation (MIPS) as a biogeotechnical technique to improve the liquefaction resistance of sandy soils with plastic fines. By leveraging the natural metabolic processes of indigenous microorganisms, this method introduces biogenic gas production within the soil matrix, effectively reducing its degree of saturation. This partial desaturation alters the soil's response to cyclic loading, aiming to mitigate the risk of liquefaction under dynamic loading conditions. Experimental results from a series of undrained strain-controlled cyclic shear tests reveal that even a modest reduction in saturation significantly enhances the soil's stability against seismic-induced liquefaction. The investigation extends to analyzing the effectiveness of the MIPS treatment in sands with low-plasticity clay content, offering insights into the interaction between microbial activity, soil texture, and liquefaction potential. Results show that while plasticity plays a key role in improving the cyclic response of soils, the influence of MIPS treatment remains noteworthy, even in sand with plastic fines. Additionally, a modified predictive formulation is introduced, incorporating a calibrated parameter to account for the influence of fines' plasticity on excess pore pressure generation.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109494 ISSN: 0267-7261

Microbially induced calcium carbonate precipitation (MICP) technology is an emerging and environmentally sustainable method for improving the strength and stiffness of soil. Specifically, this innovative approach has gained favor in marine engineering due to the advantaged compatibility between precipitated calcium carbonate induced by MICP and coral sand. Sand containing fines is susceptible to liquefy. Whereas, the impact of fines contents on cyclic behavior of MICP-treated calcareous sand remains uncertain. Consequently, this technical note aims to investigate the liquefaction behavior of biocemented calcareous silty sand by conducting undrained cyclic triaxial shear tests and microscopic analysis. The results revealed the patterns of the excess pore water pressure curves and cyclic deformation characteristics as the fines contents increased. The liquefaction resistance of biocemented sand initially decreases with the addition of fines but subsequently exhibits an increasing trend. Microscopic analysis showed that at the cementation level with the cementation solution concentration of 1 mol/L, the calcium carbonate crystals are mainly attached to the surface of sand grains and this pattern does not directly affect the force chain.

期刊论文 2024-10-01 DOI: 10.1007/s11440-024-02293-0 ISSN: 1861-1125

Understanding accurately the influence of non-plastic fines on stress-dilatancy of coral sand mixture-packing is crucial for marine engineering in various geotechnical applications. This work experimentally examined the effects of non-plastic fines and initial test conditions on stress-dilatancy behavior of mixture. Based on test results, equivalent void ratio (e*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${e}{*}$$\end{document}) was determined to quantify the global effect of fines on shear behavior across different shear stages. Test results show that e*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${e}{*}$$\end{document} exhibits a reduction as the mean effective stress (p '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}{\prime}$$\end{document}) increases, following a power function relationship. Besides, e*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${e}{*}$$\end{document} variation under phase transformation, peak state, and critical state can be described by a normalized curve. Reduced fines content and increased relative density can contribute to the enhancement of both peak strength and internal friction angle within the mixture. However, the smooth shape and lubrication function facilitated by fines actively contribute to initiation of shear contraction. Furthermore, the stress paths observed in the CD shear tests manifest as a sequence of parallel straight lines within the q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-p '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}{\prime}$$\end{document} plane. The length of these lines progressively extends as the stress level escalates. Moreover, deviator stress in q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-p '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p}{\prime}$$\end{document} curves under character state presents lower and upper limits which are 0.334 and 0.639 corresponding to tested samples determined by fines content and relative density. Elevated fines content combined with reduced relative density can lead to a reduction in both peak-state friction angle and maximum angle of dilation.

期刊论文 2024-08-01 DOI: 10.1007/s11440-024-02286-z ISSN: 1861-1125

The naturally deposited soil usually does not consist of pure coarse or fine-grained soil but of a mixture of both. The mechanical behaviour of a saturated fine sand mixed with varying amounts of low-plastic fines was evaluated by monotonic as well as high-cyclic triaxial tests. The test results were used to conclude on the effect of fines content on the critical state, phase transformation line, secant Young's modulus, the residual strain accumulation as well as strain amplitude during drained cycles of the mixtures in relation to the global void ratio as well as to the equivalent void ratio. It was found that while the choice of void ratio definition is important for the uniqueness of the critical void ratio, both approaches can be used as state variables for the phase transformation line. However, some seemingly contradictive results are found from the drained high-cyclic tests. Eventhough, an increase of the residual strain accumulation with decreasing fines content compared at the same initial equivalent void ratio is rendered by the laboratory data, a unique and on fines content independent relationship between eacc could be established only with respect to the initial global void ratio.

期刊论文 2024-07-01 DOI: 10.1007/s11440-023-02126-6 ISSN: 1861-1125

Incorporation of nonplastic fines can dramatically affect the liquefaction resistance and stiffness of sands. This study aims to evaluate the influence of nonplastic fines on the liquefaction resistance and small-strain shear modulus of calcareous sand under cyclic loading. Forty-seven sets of undrained cyclic triaxial tests and companion bender element tests are conducted on reconstituted specimens. The cyclic behavior of clean sand and silty sand with varying fines content is examined with respect to the global void ratio, relative density, and granular skeleton void ratio. The findings demonstrate that the microscopic contacts between coarse and fine grains have a significant impact on the macroscopic behavior of sand-fines mixtures. The experimental findings are evaluated using the equivalent granular skeleton void ratio, which has been recognized as a suitable parameter to describe the overall effect of fines. The findings on calcareous sand with fines are supplemented and compared with published data in accordance with the semiempirical simplified approach for liquefaction triggering based on shear wave velocity.

期刊论文 2024-05-03 DOI: 10.1680/jgeot.23.00199 ISSN: 0016-8505
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页