在列表中检索

共检索到 2

In this report we discuss the self-consistent dynamics of pickup ions in the solar wind flow around the lunar-like object. In our model the solar wind and pickup ions are considered as a particles, whereas the electrons, are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. The Moon will be chosen as a basic object for our modeling. The current modeling shows that mass loading by pickup ions H+, H-2(+), He+, and Na+ may be very important in the global dynamics of the solar wind around the Moon. In our hybrid modeling we use exponential profiles for the exospheric components. The Moon is considered as a weakly conducting body. Special attention will be paid to comparing the modeling pickup ion velocity distribution with ARTEMIS observations. Our modeling shows an asymmetry of the Mach cone due to mass loading, the upstream flow density distribution and the magnetic field. The pickup ions form an asymmetrical plasma tails that may disturb the lunar plasma wake. (C) 2013 COSPAR. Published by Elsevier Ltd. All rights reserved.

期刊论文 2013-12-01 DOI: 10.1016/j.asr.2013.08.023 ISSN: 0273-1177

In this report we discuss the self-consistent dynamics of pickup ions in the solar wind flow around the lunar-like object. In our model the solar wind and pickup ions are considered as a particles, whereas the electrons are described as a fluid. inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. The Moon will be chosen as a basic object for our modeling. The current modeling shows that mass loading by pickup ions Na+ and He+ may be very important in the global dynamics of the solar wind around the Moon. In our hybrid modeling we use exponential profiles for the exospheric components. The Moon is considered as a weakly conducting body. Special attention will be paid to comparing the modeling pickup ion velocity distribution with ARTEMIS observations. Our modeling shows an asymmetry of the Mach cone due to mass loading, the upstream flow density distribution and the magnetic field. The pickup ions form an asymmetrical plasma tails that may disturb the lunar plasma wake. (C) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.

期刊论文 2012-12-15 DOI: 10.1016/j.asr.2012.07.009 ISSN: 0273-1177
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页