Chlorpyrifos (CHP) contamination affects agricultural land and poses significant risks to plants and humans. Chitosan-oligosaccharide (COS) enhances plant resilience under stress and boosts the activity of enzymes metabolizing exogenous substances. This study aimed to explore the potential and mechanism of COS in mitigating CHP phytotoxicity and reducing CHP accumulation through both pot and field experiments. The results indicated that CHP exposure caused oxidative stress and decreased photosynthesis by 18.5 % in wheat. COS up-regulated the expression of antioxidant enzyme genes in CHP-stressed plants, resulting in a 12.1 %-29.4 % increase in antioxidant enzyme activity, which resulted in an 11.3 %-12.8 % reduction in reactive oxygen species (ROS) and an 11.5 %-14.7 % reduction in malondialdehyde (MDA) content in leaves and roots, respectively. Additionally, COS increased chlorophyll content by 6.6 % by regulating genes related to chlorophyll metabolism, enhancing photosynthesis by 13.6 %. COS also reduced CHP uptake and accelerated its metabolism by upregulating CYP450, GST, and lignin biosynthesis-related genes. Wheat treated with COS exhibited a 26.7 %-28.7 % reduction in grains' CHP content, resulting in a lower health risk index (HRI). These findings provide novel insights into the potential of COS in alleviating CHP phytotoxicity and reducing its accumulation.
Cold climate viticulture is challenged by climatic variability, including increased frost risk, shorter growing seasons, and unpredictable weather events that impact vine productivity and grape quality. Global warming is altering traditional viticulture zones, prompting the exploration of new regions for grape cultivation, the selection of climate-resilient cultivars, and the implementation of adaptive practices. This review synthesizes recent advances in adaptive viticulture practices and plant growth regulator applications, highlighting novel molecular and physiological insights on cold stress resilience and berry quality. Key strategies include delayed winter pruning to mitigate frost damage, osmoprotectant application to improve freeze tolerance, and canopy management techniques (cluster thinning and defoliation) to enhance berry ripening and wine composition. Their effectiveness depends on vineyard microclimate, soil properties and variety-specific physiological response. Cover cropping is examined for its role in vine vigor regulation, improving soil microbial diversity, and water retention, though its effectiveness depends on soil type, participation patterns, and vineyard management practices. Recent transcriptomic and metabolomic studies have provided new regulatory mechanisms in cold stress adaptation, highlighting the regulatory roles of abscisic acid, brassinosteroids, ethylene, and salicylic acid in dormancy induction, oxidative stress response, and osmotic regulation. Reflective mulch technologies are currently examined for their ability to enhance light interception, modulating secondary metabolite accumulation, improving technological maturity (soluble solids, pH, and titratable acidity) and enhancing phenolic compounds content. The effectiveness of these strategies remains highly site-specific, influenced by variety selection and pruning methods particularly due to their differences on sugar accumulation and berry weight. Future research should prioritize long-term vineyard trials to refine these adaptive strategies, integrate genetic and transcriptomic insights into breeding programs to improve cold hardiness, and develop precision viticulture tools tailored to cold climate vineyard management.
Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood. To address this, a short-term indoor experiment and a long-term outdoor pot experiment were conducted to evaluate the potential of SA to alleviate DFZ-induced phytotoxicity and its effects on DFZ uptake, translocation, metabolism, and accumulation. The underlying mechanisms were explored through physiological, biochemical, and gene expression analyses. The results showed that DFZ induced oxidative damage and reduced photosynthesis by 15.6% in wheat. SA upregulated the expression of genes encoding antioxidant enzymes (POD, CAT, SOD1, and SOD2) in the roots and leaves of DFZ-exposed plants, leading to a 7.5%-13.4% increase in antioxidant enzyme activities and a subsequent 9.7%-14.5% decrease in reactive oxygen species levels. Additionally, SA increased the total chlorophyll content by 16.3%, which was enhanced by regulating chlorophyll synthesis and degradation-related genes, thereby improving the net photosynthetic rate by 12.2%. Furthermore, SA upregulated the expression of lignin biosynthesis-related, CYP450, and GST genes, which reduced DFZ uptake and accelerated its degradation. Consequently, the wheat grain DFZ content decreased by 36.2%, thus reducing the health risk index. This study confirms the potential of SA to reduce DFZ phytotoxicity and accumulation. Based on these findings, we recommend using SA in DFZcontaminated areas to mitigate phytotoxicity and the associated human dietary exposure risks.
In conventional agricultural practices, pesticides are applied to protect crops from harmful insect pests; however, pervasive usage in high-yield crop systems poses a significant risk to the viability and sustainability of agroecosystems. Agricultural output may be adversely affected by pesticide deposition in the soil as it affects biochemical interactions between plants and soil. Pesticides cause oxidative stress by blocking physiological and biochemical pathways and disrupting the photosynthetic machinery of plants. When exposed to abiotic challenges, plant growth regulators (PGRs) such as auxin, gibberellins, cytokinin and abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), brassinosteroids (BR), and 24-epibrassinolides (EBL) reduce pesticide toxicity by strengthening antioxidant defence mechanisms and enhancing tolerance to stressful conditions. By modulating a variety of physio-biochemical mechanisms, PGRs reduce pesticide toxicity in intact plants. Furthermore, PGRs eliminate reactive oxygen species (ROS) generation by inducing antioxidant enzyme production. Pesticide residues in plant compartments are reduced as a result of PGR-mediated increase in pesticide degradation. This review provides a detailed account of the potential role of PGRs in pesticide detoxification and growth promotion in plants. This work examines several elements of plant pesticidal reactions and assesses how PGRs support plants in tolerating pesticides. The underlying mechanisms during pesticide stress are also discussed. The need for additional study on PGR applications is also emphasized.
Worldwide, it has been recorded extensively that plants are subjected to severe abiotic and biotic stressors. The scientific research community has widely reported that multi-abiotic stressors cause horticultural crop losses, accounting for at least 50 to 70% of the crop yield and quality losses. Therefore, this review focused on the detrimental effects caused by abiotic stress factors occurring in single-, combined- and multi-cell stresses on horticultural plants worldwide, along with the best production systems practices for mitigation during and post-single and combined abiotic or multi-stress damages. A conclusion and recommendation could be reached using the pool of research material, which constituted research articles, reviews, book chapters, thesis, research short communications and industrial short communications from at least twenty-five years ago. Findings showed that some of the leading abiotic stresses are single- and combined abiotic stressors like water deficit, salinity, soil pH, phosphate deficiency, wounding, soil density and pot size. Established commercial and smallholder farmers are globally adapting to plant growth regulators and biostimulants as part of their production systems. However, as much as the effectiveness of biostimulants containing humic acids, algal extracts, plant growth-promoting microorganisms and phytohormones has been reported to promote plant development under multi-stress, only a few studies are focusing on organic phytohormone-based biostimulants on horticultural crops grown under adverse multi stress factoring. In conclusion, the review recommends alternative solutions for emerging South African farmers and growers who cannot afford agricultural insurance options and energy alternatives on the common single