We present a combined reflectance and thermal radiance model for airless planetary bodies. The Hapke model provides the reflected component. The developed thermal model is the first to consistently use rough fractal surfaces, self-scattering, self-heating, and diskresolved bolometric albedo for entire planets. We validated the model with disk-resolved lunar measurements acquired by the Chinese weather satellite Gaofen-4 at around 3.5-4.1 mu m and measurements of the Diviner lunar radiometer at 8.25 mu m and 25-41 mu m, finding nearly exact agreement. Further, we reprocessed the thermal correction of the global lunar reflectance maps obtained by the Moon Mineralogy Mapper M3 and employed the new model to correct excess thermal radiance. The results confirm the diurnal, latitudinal, and compositional variations of lunar hydration reported in previous and recent studies with other instruments. Further, we compared the model to lunar measurements obtained by the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) on board BepiColombo during a flyby maneuver on April 9, 2020: the measured and the modeled radiance variations across the disk match. Finally, we adapted the thermal model to Mercury for emissivity calibration of upcoming Mercury flyby measurements and in-orbit operation. Although a physical parameter must be invariant under various observation scenarios, the best lunar surface roughness fits vary between different datasets. We critically discuss possible reasons and conclude that anisotropic emissivity modeling has room for improvement and requires attention in future studies.
The comparative study of planetary systems is a unique source of new scientific insight: following the six key science questions of the Planetary Exploration, Horizon 2061 long-term foresight exercise, it can reveal to us the diversity of their objects (Question 1) and of their architectures (Question 2), help us better understand their origins (Question 3) and how they work (Question 4), find and characterize habitable worlds (Question 5), and ultimately, search for alien life (Question 6). But a huge knowledge gap exists which limits the applicability of this approach in the solar system itself: two of its secondary planetary systems, the ice giant systems of Uranus and Neptune, remain poorly explored.Starting from an analysis of our current limited knowledge of solar system ice giants and their systems in the light of these six key science questions, we show that a long-term plan for the space exploration of ice giants and their systems will greatly contribute to answer these questions. To do so, we identify the key measurements needed to address each of these questions, the destinations to choose (Uranus, Neptune, Triton or a subset of them), the combinations of space platform(s) and the types of flight sequences needed.We then examine the different launch windows available until 2061, using a Jupiter fly-by, to send a mission to Uranus or Neptune, and find that:(1) an optimized choice of platforms and flight sequences makes it possible to address a broad range of the key science questions with one mission at one of the planets. Combining an atmospheric entry probe with an orbiter tour starting on a high-inclination, low periapse orbit, followed by a sequence of lower inclination orbits (or the other way around) appears to be an optimal choice.(2) a combination of two missions to each of the ice giant systems, to be flown in parallel or in sequence, will address five out of the six key questions and establish the prerequisites to address the sixth one: searching for life at one of the most promising Ice Giant moons.(3) The 2032 Jupiter fly-by window, which offers a unique opportunity to implement this plan, should be considered in priority; if this window cannot be met, using the 2036 Jupiter fly-by window to send a mission to Uranus first, and then the 2045 window for a mission to Neptune, will allow one to achieve the same objectives; as a back-up option, one should consider an orbiter + probe mission to one of the planets and a close fly-by of the other planet to deliver a probe into its atmosphere, using the opportunity of a future mission on its way to Kuiper Belt Objects or the interstellar medium;(4) based on the examination of the habitability of the different moons by the first two missions, a third one can be properly designed to search for life at the most promising moon, likely Triton, or one of the active moons of Uranus.Thus, by 2061 the first two missions of this plan can be implemented and a third mission focusing on the search for life can be designed. Given that such a plan may be out of reach of a single national agency, international collaboration is the most promising way to implement it.
We calculated the cross sections of photolysis of OH, LiO, NaO, KO, HCl, LiCl, NaCl, KCl, HF, LiF, NaF, and KF molecules using quantum chemistry methods. The maximal values for photolysis cross sections of alkali metal monoxides are on the order of 10(-18) cm(2). The lifetimes of photolysis for quiet Sun at 1 astronomical unit are estimated as 2.0 x 10(5), 28, 5, 14, 2.1 x 10(5), 225, 42, 52, 2 x 10(6), 35 400, 486, and 30 400 s for OH, LiO, NaO, KO, HCl, LiCl, NaCl, KCl, HF, LiF, NaF, and KF, respectively. We performed a comparison between values of photolysis lifetimes obtained in this work and in previous studies. Based on such a comparison, our estimations of photolysis lifetimes of OH, HCl, and HF have an accuracy of about a factor of 2. We determined typical kinetic energies of main peaks of photolysis-generated metal atoms. Impact-produced LiO, NaO, KO, NaCl, and KCl molecules are destroyed in the lunar and Hermean exospheres almost completely during the first ballistic flight, while other considered molecules are more stable against destruction by photolysis.
Using the near-infrared spectral reflectance data of the Chandrayaan-1 Moon Mineralogy Mapper (M-3) instrument, we report an unusually bright structure of 30 x 60 km(2) on the lunar equatorial farside near crater Dufay. At this location, the 3-mu m absorption band feature, which is commonly ascribed to hydroxyl (OH) and /or water (H2O), at local midday is significantly (similar to 30%) stronger than on the surrounding surface and, surprisingly, stronger than in the illuminated polar highlands. We did not find a similar area of excessively strong 3-mu m absorption anywhere else on the Moon. A possible explanation for this structure is the recent infall of meteoritic or cometary material of high OH /H2O content forming a thin layer detectable by its pronounced 3-mu m band, where a small amount of the OH /H2O is adsorbed by the surface material into binding states of relatively high activation energy. Detailed analysis of this structure with next-generation spacecraft instrumentation will provide further insight into the processes that lead to the accumulation of OH /H2O in the lunar regolith surface.
Saturn's rings are rock-poor, containing 90%-95% ice by mass. As a group, Saturn's moons interior to and including Tethys are also about 90% ice. Tethys itself contains 40% rock. Here we simulate the evolution of a massive primordial ice-rich ring and the production of satellites as ring material spreads beyond the Roche limit. We describe the Rocheinterior ring with an analytic model, and use an N-body code to describe material beyond the Roche limit. We track the accretion and interactions of spawned satellites, including tidal interaction with the planet, assuming a tidal dissipation factor for Saturn of Q similar to 10(4). We find that ring torques and capture of moons into mutual resonances produce a system of ice-rich inner moons that extends outward to approximately Tethys's orbit in 109 years, even with relatively slow orbital expansion due to tides. The resulting mass and semimajor axis distribution of spawned moons resembles that of Mimas, Enceladus, and Tethys. We estimate the mass of rock delivered to the moons by external cometary impactors during a late heavy bombardment. We find that the inner moons receive a mass in rock comparable to their current total rock content, while Dione and Rhea receive an order-of-magnitude less rock than their current rock content. This suggests that external contamination may have been the primary source of rock in the inner moons, and that Dione and Rhea formed from much more rock-rich source material. Reproducing the distribution of rock among the current inner moons is challenging, and appears to require large impactors stochasticity and/or the presence of some rock in the initial ring.
Beyond Earth-like planets, moons can be habitable, too. No exomoons have been securely detected, but they could be extremely abundant. Young Jovian planets can be as hot as late M stars, with effective temperatures of up to 2000 K. Transits of their moons might be detectable in their infrared photometric light curves if the planets are sufficiently separated (greater than or similar to 10 AU) from the stars to be directly imaged. The moons will be heated by radiation from their young planets and potentially by tidal friction. Although stellar illumination will be weak beyond 5AU, these alternative energy sources could liquify surface water on exomoons for hundreds of Myr. A Mars-mass H2O-rich moon around beta Pic b would have a transit depth of 1.5 x 10(-3), in reach of near-future technology.
Radio and X-ray emission from brown dwarfs (BDs) suggest that an ionized gas and a magnetic field with a sufficient flux density must be present. We perform a reference study for late M-dwarfs (MD), BDs and giant gas planet to identify which ultracool objects are most susceptible to plasma and magnetic processes. Only thermal ionization is considered. We utilize the DRIFT-PHOENIX model grid where the local atmospheric structure is determined by the global parameters T-eff, log(g) and [M/H]. Our results show that it is not unreasonable to expect Ha or radio emission to origin from BD atmospheres as in particular the rarefied upper parts of the atmospheres can be magnetically coupled despite having low degrees of thermal gas ionization. Such ultracool atmospheres could therefore drive auroral emission without the need for a companion's wind or an outgassing moon. The minimum threshold for the magnetic flux density required for electrons and ions to be magnetized is well above typical values of the global magnetic field of a BD and a giant gas planet. Na+, K+ and Ca+ are the dominating electron donors in low-density atmospheres (low log(g), solar metallicity) independent of T-eff. Mg+ and Fe+ dominate the thermal ionization in the inner parts of MD atmospheres. Molecules remain unimportant for thermal ionization. Chemical processes (e.g. cloud formation) affecting the most abundant electron donors, Mg and Fe, will have a direct impact on the state of ionization in ultracool atmospheres.
Moons of giant planets may represent an alternative to the classical picture of habitable worlds. They may exist within the circumstellar habitable zone of a parent star, and through tidal energy dissipation they may also offer alternative habitable zones, where stellar insolation plays a secondary, or complementary, role. We investigate the potential extent of stable satellite orbits around a set of 74 known extrasolar giant planets located beyond 0.6 AU from their parent stars - where moons should be long-lived with respect to removal by stellar tides. For this sample, the typical stable satellite orbital radii span a band some similar to 0.02 AU in width, compared to the similar to 0.12 - 0.15 AU bands for the Jovian and Saturnian systems. Approximately 60% of these giant planets can sustain satellites or moons in bands up to similar to 0.04 AU in width. For comparison, the Galilean satellites extend to similar to 0.013 AU. We discuss how the actual number and characteristics of satellites will depend strongly on the formation pathways. We investigate the stellar insolation that moons would experience for these exoplanet systems and the implications for sublimation loss of volatiles. We find that between 15% and 27% of all known exoplanets may be capable of harboring small, icy moons. In addition, some 22% - 28% of all known exoplanets could harbor moons within a sublimation zone,'' with insolation temperatures between 273 and 170 K. A simplified energy-balance model is applied to the situation of temperate moons, maintained by a combination of stellar insolation and tidal heat flow. We demonstrate that large moons (> 0.1 M circle times), at orbital radii commensurate with those of the Galilean satellites, could maintain temperate, or habitable, surface conditions during episodes of tidal heat dissipation of the order 1 - 100 times that currently seen on Io.