Cadmium (Cd) pollution leads to reduced crop yields and poses a threat to human health, making it an important environmental and agricultural safety issue. Selenium [Se(V)] has been shown to alleviate Cd stress in plants; however, the mechanisms underlying Se-mediated protection against Cd toxicity remain largely unclear. In this study, we investigated the physiological and molecular mechanisms of Se(W)-alleviated Cd toxicity in strawberry plants through physio-biochemical and transcriptomic analyses. Our results showed that foliar spraying with Se (IV) increased photosynthetic efficiency, reduced Cd-induced oxidative damage by enhancing antioxidant enzyme activities and soluble sugar contents, thereby improving Cd stress tolerance. Transcriptomic profiling revealed 477 common differentially accumulated transcripts (DATs), predominantly enriched in transporter activity, oxidoreductase function, and antioxidant-related processes. Notably, seven key genes involved in Cd efflux, chelation, secondary metabolite transport and nutrient uptake (FvPCR9-like, FvCBP-like, FvWATI-like, FvMOT1, FvY1476gO214O, FvNR12.1 and FvZIP8) exhibited opposite expression patterns under Se(W) and Cd treatments. Supplementation with Se(IV) also modulated phytohormone signaling, nitrogen metabolism and carbon metabolism pathways, providing a multi-dimensional approach to mitigating Cd-induced physiological disruptions. This study provides novel insights into Se(IV)-mediated Cd stress adaptation, and offers promising strategies for developing low-Cd-accumulating crops, addressing critical environmental and agricultural challenges associated with heavy metal contamination.
Integration of breeding innovations and epigenetic modifications offers the potential to boost productivity and promote sustainable agricultural practices, particularly in tomato production, which accounts for 16 % of global vegetable production. They are susceptible to various stress factors, Both abiotic (light, temperature, water, humidity, nutrients) and biotic (pests, diseases), which can impact fruit quality and reduce yield quantity by 50-70 %leading to food insecurity and economic losses. Climatic factors impact the traditional farming of tomatoes in the open field; innovative technologies aim to tackle the adverse effects of both abiotic and biotic stress factors. It highlights advancements in crop productivity and stress tolerance, including increased phytochemicals biosynthesis, improved water use efficiency, and soil salinity tolerance. However, challenges like photooxidative damage and downregulation of anthocyanin biosynthetic genes persist. This review provides highlights of promising technologies to mitigate the impact of stress factors on open field tomato production, highlighting both qualitative and quantitative losses. Besides sustainable systematic solutions, such as agroforestry systems, the advantages of using beneficial microbial endophytes, nanomaterials, and exogenous phytohormones in agriculture are discussed.
With an increase in global demand for food without unwanted environmental issues stresses a need for sustainable agriculture. Up till now, conventional agricultural methods focused on obtaining great crop yields from the use of chemical fertilizers but overlooked the hazardous concerns that are leading to soil depletion. These chemical fertilizers adversely affect soil structure, decrease fertility, damage soil flora, and lead to soil erosion. In this scenario, understanding the natural mechanisms of plant-microbe interactions in the rhizospheric environment can potentially lead a way towards eco-friendly agriculture, as the plant associating bacteria prompting phytostimulation can be the key players in unlocking sustainable alternative for conventional fertilizers. Plant growth-promoting bacteria (PGPB) are a distinct class of soil microorganisms that promote plant growth and yields by enhancing nutrient delivery and shielding the plants against diseases. N fixing bacteria such as Rhizobium and Azotobacter, for instance, fix atmospheric nitrogen into a usable form for plants, Pseudomonas and Bacillus induce root and shoot elongation by synthesizing phytohormones. These bacteria also provide protection to plants by synthesizing antimicrobial substances and increasing the competitive nature of the rhizosphere. Bacteria like Azospirillum, Enterobacter, and Flavobacterium also stimulate plant growth by producing phytohormones under specific envirnmental conditions. Utilization of PGPB as bio-stimulants in agriculture is a promising method for sustainable agriculture dependence on chemical fertilizers and maintaining soil health. This approach would play an important role in sustaining a balanced ecosystem along with increasing agricultural productivity.
Large amounts of chemical fertilizers are still used to suppress pathogens and boost agricultural productivity and food generation. However, their use can cause harmful environmental imbalance. Furthermore, plants typically absorb limited amounts of the nutrients provided by chemical fertilizers. Recent studies are recommending the use of microbiota present in the soil in different formulations, considering that several microorganisms are found in nature in association with plants in a symbiotic, antagonistic, or synergistic way. This ecological alternative is positive because no undesirable significant alterations occur in the environment while stimulating plant nutrition development and protection against damage caused by control pathogens. Therefore, this review presents a comprehensive discussion regarding endophytic and rhizospheric microorganisms and their interaction with plants, including signaling and bio-control processes concerning the plant's defense against pathogenic spread. A discussion is provided about the importance of these bioinputs as a microbial resource that promotes plant development and their sustainable protection methods aiming to increase resilience in the agricultural system. In modern agriculture, the manipulation of bioinputs through Rhizobium contributes to reducing the effects of greenhouse gases by managing nitrogen runoff and decreasing nitrous oxide. Additionally, mycorrhizal fungi extend their root systems, providing plants with greater access to water and nutrients.
The increasing consumption and demand of jujube fruits has accelerated production over the recent past. However, the aspects of eco-friendly strategies for pest control and high-quality fruit production are becoming more important to combat the impending dangers of repeated chemicals use in orchard management. This study identified for the first time, the sap beetle (Phenolia (Lasiodites) picta) larvae (based on mitochondrial DNA barcode sequencing), as the major insect pest causing damage in jujube fruits in Korea. The study investigated the insecticidal potential of cuticle-degrading enzymes from Bacillus licheniformis PR2 against P. picta larvae, and the enhancement of fruit quality and yield, through phytohormone production, ammonia production and phosphate solubilizing properties of the bacterium. Bacillus licheniformis PR2 produced chitinase and protease and caused larval mortalities of 55.56 % and 68.89 % when treated with the bacterial broth culture and crude enzyme fraction, respectively. The insecticidal activity in both treatments were characterized by deep cuticle fissures with swollen/depressed surfaces and loss of sensilla. Field application of B. licheniformis PR2 effectively controlled P. picta larvae in jujube orchard during active feeding period as they moved from fruit-to-fruit which reduced the damage and premature fruit-drop. Moreover, B. licheniformis PR2 produced indole-3-acetic acid (IAA) and gibberellic acid (GA) phytohormones, and increased the soil concentration of nitrogen and phosphorus concentration in the soil. The application of B. licheniformis PR2 in jujube orchard increased the chlorophyll content/photosynthetic activity, fruit yield, fruit characteristics (such as length, diameter and fruit weight) and the organoleptic properties (such as the Ca content, firmness and sugar concentration) of jujube fruits, compared to the control and conventional treatment. Thus, we demonstrate that B. licheniformis PR2 can be a viable alternative to chemical pesticides and fertilizers and could enhance the eco-friendly and sustainable production of high-quality jujube fruits to meet the increasing demands.
Heavy metal (HM) pollution in agricultural soils threatens plant growth and food security, underscoring the urgency for sustainable and eco-friendly solutions. This study investigates the potential of endophytic fungi, Fusarium proliferatum SL3 and Aspergillus terreus MGRF2, in mitigating nickel (Ni) and cadmium (Cd) stress in Solanum lycopersicum (tomato). These fungi were evaluated for their plant growth-promoting traits, including the production of indole-3-acetic acid (IAA) and siderophores, offering a sustainable strategy for alleviating HM toxicity. Inoculation with SL3 and MGRF2 significantly reduced metal accumulation in plant tissues by enhancing metal immobilization and modifying root architecture. Microscopic analysis revealed that fungi protected root epidermal cells from Ni- and Cd-induced damage, preserving cellular integrity and preventing plasmolysis. Fungal-treated plants exhibited improved growth and biomass, with SL3 demonstrating superior Cd stress mitigation and MGRF2 excelling under Ni stress. Photosynthetic pigment levels, including chlorophyll-a and carotenoids, were restored, highlighting the role of fungi in maintaining photosynthetic efficiency. Antioxidant activity was also modulated, as reduced glutathione (GSH) levels and increased flavonoid production were observed, contributing to enhanced oxidative stress management. Hormonal profiling revealed that fungal inoculation balanced stress-induced hormonal disruptions, with lower abscisic acid (ABA) levels and improved salicylic acid (SA) and gibberellic acid (GA) pathways. These changes facilitated better stress adaptation, enhanced nutrient uptake, and improved physiological performance. qRT-PCR analysis further revealed differential gene expression patterns, while antioxidant enzyme activity strengthened the plants' defense against HMinduced oxidative damage. Multivariate analyses highlighted shoot and root traits as critical indicators of resilience, with fungal inoculation driving substantial improvements. These findings demonstrate the potential of SL3 and MGRF2 as eco-friendly bioinoculants, offering a sustainable and cost-effective approach to reducing HMs toxicity in contaminated soils while enhancing crop productivity. This work highlights the promising role of plant-microbe interactions in advancing sustainable agriculture and addressing the challenges posed by heavy metal pollution.
Drought is a serious environmental challenge that reduces the productivity of valuable crops, including wheat. Brassinosteroids (BRs) is a group of phytohormones that have been used to enhance wheat drought tolerance. Wheat cultivars with different adaptation strategies could have their own specific drought tolerance mechanisms, and could react differently to treatment with growth regulators. In this work, the effect of seed pretreatment with 0.4 mu M 24-epibrassinolide (EBR) was investigated in two wheat (Triticum aestivum L.) cultivars contrasting in drought behavior, tolerant Ekada 70 (cv. E70) and sensitive Zauralskaya Zhemchuzhina (cv. ZZh), in early ontogenesis under dehydration (PEG-6000) or soil drought conditions. EBR pretreatment mitigated the stress-induced inhibition of seedling emergence and growth, as well as membrane damage in cv.E70 but not in ZZh. An enzyme-linked immunosorbent assay (ELISA) revealed substantial changes in hormonal balance associated with ABA accumulation and a drop in the levels of IAA and cytokinins (CKs) in drought-subjected seedlings of both cultivars, especially ZZh. EBR-pretreatment reduced drought-induced hormone imbalance in cv. E70, while it did not have the same effect on ZZh. EBR-induced changes in the content of wheat germ agglutinin (WGA) belonging to the protective proteins in E70 seedlings suggest its contribution to EBR-dependent adaptive responses. The absence of a detectable protective effect of EBR on the ZZh cultivar may be associated with its insensitivity to pre-sowing EBR treatment.
The present study uncovers the impacts of pesticide-thiamethoxam (TMX- 750 mg L- 1 ) and salicylic acid (SA- 0.01, 0.1 and 1 mM) in Brassica juncea L. TMX poisoning exacerbates the nuclear and membrane damage, whereas an increment in the oxidative stress markers like hydrogen peroxide (H2O2), superoxide anions (O2- ) and malondialdehyde (MDA) contents has been observed. The significance of phytohormone SA in mitigating TMX toxicity by enhancing the growth, and antioxidant capacities of B. juncea seedlings is not well documented. Salicylic acid priming to these TMX-exposed seedlings maximizes the germination potential by 34%, and root, shoot length by 86.9% and 41.5%, whereas, minimizing the levels of oxidative stress indicators such as H2O2 by 34.8%, O 2- by 26.9% and amounts of MDA by 45.6% and EL (electrolyte leakage) contents by 22.7% under 1 mM of SA. Also, an increment in the activity of enzymatic antioxidants like superoxide dismutase (SOD), ascorbate peroxidase (APOX), glutathione peroxidase (GPOX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), peroxidase (POD), and catalase (CAT) by 122.1%, 186%, 39%, 82.61%, 40.02%, 75.6% and 59.5% was observed when TMX exposed seeds were supplemented with the highest SA (1 mM) concentration. Whereas, an upregulation in the gene expressions of enzymatic antioxidants was assessed as well as a swift decrease in the RBOH1 (respiratory burst oxidase1) gene expression was observed under the subsequent SA supplementation. Thus, the results effectively address the ameliorative potentials of exogenously applied SA in order to maximize the growth and development, by mediating osmotic adjustments, and antioxidant potentials in B. juncea L.
Soil salinization is a severe environmental issue limiting the growth and yield of crops worldwide. Subsurface drip irrigation with micro-nano bubble hydrogen water (SDH) is an innovative way to realize the role of hydrogen gas (H2) in improving plant resistance to salt stress in practical agricultural productions. Nonetheless, limited information is available on how SDH affects the plant salt tolerance performance. Especially, the underlying physiological respond, hormone-regulated and soil microbial-mediated mechanisms have not been reported so far. In this study, the effects of SDH on lettuce (Lactuca sativa L.) growth, photosynthesis, root development, antioxidant system, phytohormone, and soil microbial community were investigated under normal and salt stress conditions. The results showed that, with salt stress, SDH significantly enhanced the lettuce fresh weight, photosynthesis activity, and root growth. The leaf antioxidant enzyme activities increased and reactive oxygen species (ROS) content decreased to reduce the oxidative damage. The decreased malondialdehyde (MDA) content indicated a low membrane lipid peroxidation responsible for cellular damage. SDH also helped to maintain osmotic homeostasis, which was reflected by the increased soluble protein (SP) content. Reduced Na+/ K+ ratio and ROS did not trigger excessive production of stress response hormones abscisic acid (ABA) and jasmonic acid (JA), which alleviated the mediated growth inhibition effects. SDH enriched the abundance of the plant growth-promoting rhizobacteria (PGPR) in the soil, such as Arthrobacter and Pseudomonas. That might be the reason for explaining the increase in hormone indoleacetic acid (IAA) in lettuce and 1-aminocyclopropane-1carboxylate (ACC) deaminase activity in the soil, which was beneficial for inhibiting ethylene production and promoting plant growth. Under the normal condition, variations of physiological and growth indicators as affected by SDH were similar to those under the salt stress condition, except for root development. High concentration of dissolved hydrogen gas in water might expel the oxygen. The induced soil anoxic environment limited oxygen diffusion, in turn inhibited root respiration and growth. The effect of hydrogen concentration on the plant tolerance against salt stress under different salt content could be further studied.
Key messageMelatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense.AbstractLead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development. Because of its pharmaceutical importance, improvements in Plantago ovata yield against abiotic stresses are necessary. Melatonin (MEL) is a stress-alleviating biostimulator and our results showed a reduction in Pb induced phytotoxicity by enhancing plant growth attributes and balancing protective osmolytes. Pb-induced reactive oxygen species accumulation, including superoxide and peroxide free radicals and their mitigation through enzymatic antioxidants, was demonstrated in presence of MEL. Cell viability and Pb bioaccumulation were determined to understand the extent of cellular damage. Moreover, MEL increased secondary metabolite (flavonoids and anthocyanins) contents by 2-3-fold at the lowest Pb concentrations. Similar increases in the relative expression of genes (PoPAL and PoPPO), which are responsible for the production of non-enzymatic antioxidants, were observed. Notably, the upregulation of the PoCOMT gene up to 4-fold indicates increased melatonin production, as manifested in the phytomelatonin level. MEL supplementation also increased the auxin (IAA) level by 3-fold in the 100 mu M Pb treatment group, while the abscisic acid (ABA) level decreased (1.4-fold) and the expression of PoMYB (a stress-related transcription factor) increased (up to 2.66-fold). Additionally, we found extreme downregulation (up to 18-fold) in the relative expression of PoMT 2 (a metal binding thiol compound) with melatonin treatment, which is otherwise upregulated (by 6-fold) during Pb stress. In the current study, these effects collectively revealed that MEL contribute to enhanced plant growth and Pb stress tolerance.