As part of the development of alternative and environmentally friendly control against phytopathogenic fungi, Burkholderia cepacia could be a useful species notably via the generation of hydrolytic enzymes like chitinases, which can act as a biological control agent. Here, a Burkholderia contaminans S614 strain exhibiting chitinase activity was isolated from a soil in southern Tunisia. Then, response surface methodology (RSM) with a central composite design (CCD) was used to assess the impact of five factors (colloidal chitin, magnesium sulfate, dipotassium phosphate, yeast extract, and ammonium sulfate) on chitinase activity. B. contaminans strain 614 growing in the optimized medium showed up to a 3-fold higher chitinase activity. This enzyme was identified as beta-N-acetylhexosaminidase (90.1 kDa) based on its peptide sequences, which showed high similarity to those of Burkholderia lata strain 383. Furthermore, this chitinase significantly inhibited the growth of two phytopathogenic fungi: Botrytis cinerea M5 and Phoma medicaginis Ph8. Interestingly, a crude enzyme from strain S614 was effective in reducing P. medicaginis damage on detached leaves of Medicago truncatula. Overall, our data provide strong arguments for the agricultural and biotechnological potential of strain S614 in the context of developing biocontrol approaches.
Alfalfa spring black stem and leaf spot disease (ASBS) is a cosmopolitan soil-borne and seed-borne disease caused by Phoma medicaginis, which adversely affects the yield, and nutritive value and can stimulate production of phyto-oestrogenic compounds at levels that may adversely affect ovulation rates in animals. This review summarizes the host range, damage, and symptoms of this disease, and general features of the infection cycle, epidemic occurrence, and disease management. ASBS has been reported from over 40 countries, and often causes severe yield loss. Under greenhouse conditions, reported yield loss was 31-82% for roots, 32-80% for leaves, 21% for stems and 26-28% for seedlings. In field conditions, the forage yield loss is up to 56%, indicating that a single-cut yield of 5302 kg/ha would be reduced to 2347 kg/ha. P. medicaginis can infect up to 50 species of plants, including the genera Medicago, Trifolium, Melilotus, and Vicia. ASBS is more severe during warm spring conditions before the first harvest than in hot summer and cooler winter conditions, and can infect alfalfa roots, stems, leaves, flowers, pods, and seeds, with leaf spot and/or black stem being the most typical symptoms. The primary infection is caused by the overwintering spores and mycelia in the soil, and on seeds and the cortex of dead and dry stems. The use of resistant cultivars is the most economical and effective strategy for the control of ASBS. Although biological control has been studied in the glasshouse and is promising, chemical control is the main control method in agriculture.