共检索到 4

Characterising the mechanical properties of minor bodies is essential for understanding their origin and evolution. Past missions such as Hayabusa2 have landed on asteroids to sample and discover what these bodies are made of. However, there has been conflicting evidence and reports into the physical properties of the granular surface material of these bodies. With future missions such as Japan Aerospace eXploration Agency's Martian Moons eXploration mission landing on Phobos, the understanding and identification of these physical properties is crucial to maximising the scientific output from these missions. Penetrometry, the determination of the reaction force that an object experiences as it penetrates a surface, can help to understand the essential properties of regolith, such as grain size, porosity and cohesion. Results of penetrometry experiments are largely analysed based on empirical models, which presents us with a challenge if we want to apply them to understand granular materials on asteroid surfaces because gravity cannot be eliminated in the laboratory. Hence, it is essential to verify penetrometry as a method and validate penetrometry instrument designs in microgravity. For this purpose, we conducted a microgravity experiment onboard a parabolic flight campaign. Our experiment tested the use of penetrometry in asteroid-analogue environments by investigating samples with varying properties, such as grain size distribution and shape, and then compared to 1 g experiments to understand the role microgravity plays. The experiment provided a substantial database for future analysis. This paper will focus on the design of the experiment and the parabolic flight campaign in which the experiments were conducted. The design decisions and the variables adjusted during the experiment will be discussed, evaluating how these influenced the campaign and its outcomes. We will also provide a snapshot of preliminary results of the data captured during this experiment. For example, we show the effect of cohesion on penetrometer reaction force, with more cohesive materials providing larger reaction forces nearly of the same magnitude of their 1 g counterparts. We also show that penetrometer tip shapes provide different reaction forces and that flat tips provide the largest reaction force compared to the others. The influence of penetration velocity will be investigated further with the aid of theoretical models. Early indications from the results seen so far are promising for future analyses and will provide key information for the analysis of penetrometry data on future missions.

期刊论文 2025-06-03 DOI: 10.1186/s40645-025-00704-8 ISSN: 2197-4284

Recent works have shown that the Martian moons Phobos and Deimos may have accreted within a giant impact-generated disk whose composition is about an equal mixture of Martian material and impactor material. Just after the giant impact, the Martian surface heated up to similar to 3000-6000 K and the building blocks of moons, including volatile-rich vapor, were heated up to similar to 2000 K. In this paper, we investigate the volatile loss from the building blocks of Phobos and Deimos by hydrodynamic escape of vapor and radiation pressure on condensed particles. We show that a non-negligible amount of volatiles (>10% of the vapor with temperature >1000 K via hydrodynamic escape, and moderately volatile dusts that condense at similar to 700-2000 K via radiation pressure) could be removed just after the impact during their first single orbit from their pericenters to apocenters. Our results indicate that bulk Phobos and Deimos are depleted in volatile elements. Together with future explorations such as the Japan Aerospace eXploration Agency's Martian Moons eXploration mission, our results could be used to constrain the origin of Phobos and Deimos.

期刊论文 2018-06-20 DOI: 10.3847/1538-4357/aac024 ISSN: 0004-637X

We present a new formalism to describe the outgassing of hydrogen initially implanted by the solar wind protons into exposed soils on airless bodies. The formalism applies a statistical mechanics approach similar to that applied recently to molecular adsorption onto activated surfaces. The key element enabling this formalism is the recognition that the interatomic potential between the implanted H and regolith-residing oxides is not of singular value but possess a distribution of trapped energy values at a given temperature, F(U,T). All subsequent derivations of the outward diffusion and H retention rely on the specific properties of this distribution. We find that solar wind hydrogen can be retained if there are sites in the implantation layer with activation energy values exceeding 0.5eV. We especially examine the dependence of H retention applying characteristic energy values found previously for irradiated silica and mature lunar samples. We also apply the formalism to two cases that differ from the typical solar wind implantation at the Moon. First, we test for a case of implantation in magnetic anomaly regions where significantly lower-energy ions of solar wind origin are expected to be incident with the surface. In magnetic anomalies, H retention is found to be reduced due to the reduced ion flux and shallower depth of implantation. Second, we also apply the model to Phobos where the surface temperature range is not as extreme as the Moon. We find the H atom retention in this second case is higher than the lunar case due to the reduced thermal extremes (that reduces outgassing).

期刊论文 2017-01-01 DOI: 10.1002/2016JE005168 ISSN: 2169-9097

The origin of the Martian moons, Phobos and Deimos, is still an open issue: either they are asteroids captured by Mars or they formed in situ from a circum-Mars debris disk. The capture scenario mainly relies on the remote-sensing observations of their surfaces, which suggest that the moon material is similar to outer-belt asteroid material. This scenario, however, requires high tidal dissipation rates inside the moons to account for their current orbits around Mars. Although the in situ formation scenarios have not been studied in great details, no observational constraints argue against them. Little attention has been paid to the internal structure of the moons, yet it is pertinent for explaining their origin. The low density of the moons indicates that their interior contains significant amounts of porous material and/or water ice. The porous content is estimated to be in the range of 30-60% of the volume for both moons. This high porosity enhances the tidal dissipation rate but not sufficiently to meet the requirement of the capture scenario. On the other hand, a large porosity is a natural consequence of re-accretion of debris at Mars' orbit, thus providing support to the in situ formation scenarios. The low density also allows for abundant water ice inside the moons, which might significantly increase the tidal dissipation rate in their interiors, possibly to a sufficient level for the capture scenario. Precise measurements of the rotation and gravity field of the moons are needed to tightly constrain their internal structure in order to help answering the question of the origin.

期刊论文 2011-08-26 DOI: 10.1007/s00159-011-0044-6 ISSN: 0935-4956
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页