Evaluating petroleum contamination risk and implementing remedial measures in agricultural soil rely on indicators such as soil metal(loid)s and microbiome alterations. However, the response of these indicators to petroleum contamination remains under-investigated. The present study investigated the soil physicochemical features, metal(loid)s, microbial communities and networks, and phospholipid fatty acids (PLFAs) community structures in soil samples collected from long-(LC) and short-term (SC) petroleum-contaminated oil fields. The results showed that petroleum contamination increased the levels of soil total petroleum hydrocarbon, carbon, nitrogen, sulfur, phosphorus, calcium, copper, manganese, lead, and zinc, and decreased soil pH, microbial biomass, bacterial and fungal diversity. Petroleum led to a rise in the abundances of soil Proteobacteria, Ascomycota, Oleibacter, and Fusarium. Network analyses showed that the number of network links (Control vs. SC, LC = 1181 vs. 700, 1021), nodes (Control vs. SC, LC = 90 vs. 71, 83) and average degree (Control vs. SC, LC = 26.244 vs. 19.718, 24.602) recovered as the duration of contamination increased. Petroleum contamination also reduced the concentration of soil PLFAs, especially bacterial. These results demonstrate that brief exposure to high levels of petroleum contamination alters the physicochemical characteristics of the soil as well as the composition of soil metal(loid)s and microorganisms, leading to a less diverse soil microbial network that is more susceptible to damage. Future research should focus on the culturable microbiome of soil under petroleum contamination to provide a theoretical basis for further remediation. (c) 2025 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
The intrusion of petroleum into soil ecosystems causes severe environmental damage. A synergistic plant-microbe-electrochemical soil remediation technology offers a strategic and eco-friendly solution to address this issue. However, the significant mass transfer resistance in soil poses a major limitation for long-distance site remediation. This research introduces a novel technique that leverages water circulation driven by plant transpiration to facilitate the long-distance migration, adsorption, and electrochemical degradation of hydrocarbons. Experimental results demonstrate that the incorporation of Iris tectorum, polyurethane sponge (as an electrode support matrix), and water-retaining agents significantly enhanced soil water circulation, enabling the migration of soluble organic carbon over distances of up to 60 cm. Additionally, the application of a weak voltage (0.7 V) to the electrode further improved total organic carbon (TOC) removal, achieving a reduction of 193 +/- 71 mg/L. After 42 days of remediation, hydrological circulation accelerated the degradation of n-alkanes and aromatics, with removal efficiencies reaching 57 % and 44 %, respectively, within the 20-60 cm range in the microbial electrochemical cell (MEC) group. The functional microbiota, enriched with electroactive microorganisms, was effectively cultivated on the anode, with the total abundance of potential hydrocarbon-degrading bacteria increasing by 42 % compared to the control. Furthermore, a scalable configuration has been proposed, offering a novel perspective for multidimensional ecological soil remediation strategies.