Application of organic mulches has repeatedly been shown to reduce infestation with Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), the Colorado potato beetle (CPB). In order to determine if the nutritional status of potatoes as affected by mulch could explain the mulch effects in potatoes against CPB, we determined potato leaf nutrient composition in unmulched control plots and plots mulched with grass-clover or triticale-vetch and assessed mulch effects on CPB damage and development in the field during 3 years and under controlled conditions. In mulched plots, foliar Mo, Cl, and K contents were consistently higher than those without mulch, and leaf damage by CPB was reduced significantly. In addition, increased B contents were associated with undamaged plant material, while higher Zn contents were associated with leaves damaged by CPB. Under controlled conditions, CPB fitness was not affected by mulch application. Overall, reduced CPB damage could not be clearly attributed to altered foliar nutrient contents due to mulching. It is thus more likely that CPB reductions in mulched systems are due to mechanisms other than an altered nutrient balance.
The management of subterranean termite pests remains a major challenge in Southeast Asia, where these pests cause significant structural and economic damage. Termite baiting has emerged as an effective option to conventional soil termiticides, offering a safer pest management approach with reduced chemical input into the environment. In this paper, we review the history of termite research in Southeast Asia, highlighting the turning points of termite research, from agriculture and plantations to buildings and structures, and the transformative impact of termite baiting on the pest management industry in the region over the last 25 yr. We also discuss the outcome of a survey of pest management professionals on their baiting practices, bait performance, and reinfestation rates. All bait products eliminated termite colonies. There were significant differences in terms of the baiting period to colony elimination, with Xterm outperforming Sentricon, Exterra, and Exterminex. Above-ground (AG) baiting was preferred over in-ground (IG) baiting due to construction constraints and low IG station interception rates. While bait effectively controlled Coptotermes spp., challenges persist in managing fungus-growing termites such as Macrotermes gilvus Hagen. Reinfestation occurred in < 10% of baited premises.
Agriculture is crucial for food security and safety, but agrochemical insufficiency in managing pest infestations leads to agrochemical overuse, reducing crop yields, escalating disease outbreaks, and dispersing resistant organisms. The Green Revolution led to inconsiderate usage of chemical synthetic pesticides and fertilizers resulting in low soil biodiversity and resistance to pests and pathogens. New research focuses on integrating pest-resistant genetically modified crops, climate-adaptive practices, and nano-pesticides, aiming to minimize pesticide usage and reduce harmful environmental impact. Nanotechnology offers a transformative potential for sustainable agriculture by enhancing pesticide delivery, precision farming, and crop productivity with negligible environmental impact. This technology offers the potential for developing environment-friendly, biocompatible, and intelligent insecticides that respond to ecological changes. Nanoparticles also supply materials to plants and generate sophisticated biosensors for precision farming. Conventional herbicides, insecticides, and fertilizers have been nanoencapsulated to aid in the gradual and continuous release of nutrients and agrochemicals. The targeted nanocarrier systems improve pesticide delivery, reducing environmental impact and pesticide resistance while ensuring minimal harm to the non-target organisms. Studies show nanoparticles like silver, zinc oxide, and silica as effective biocides, enhancing crop resilience and productivity. Nanotechnology has prospective in agriculture as a green and effective substitute, reducing environmental damage and improving pest control techniques. The related difficulties of nanotechnology in agriculture are also highlighted in this review, focusing on how it might help meet the demands of future food security and promote environment-friendly farming methods. The present review explores the application of nanotechnology in agriculture mainly focusing on precision farming and sustainable crop production. It also highlights its ability to enhance crop productivity, manage insect's population, improve soil health, and address environmental issues. However, limitations include its high manufacturing costs, regulatory deficiencies, and limited field-scale uses.
Corn is a vital global crop, yet its cultivation demands extensive agrochemical inputs, prompting the need for sustainable alternatives. This study investigates the impact of vermicompost (VC) and vermicompost tea (VCT) applications on corn growth, physiology, and resistance to Fall Armyworm (FAW) infestation using advanced optical plant sensors. Six treatments were employed: V0 (control), VC1, VCT100, VC1 + VCT50, VC3, and VC3 + VCT50. During the growing season, plant growth parameters, such as height, chlorophyll content, and spectral reflectance were measured using a chlorophyll meter, fluorometer, porometer, and spectroradiometer. Results indicated that VC-treated plants exhibited superior growth and higher chlorophyll content than control or untreated plants. The VC1 + VCT50-treated plants showed robust resistance to FAW, with no infestation throughout the season, while VC1-treated plants showed delayed attack by FAW. Soil chemical analysis showed that VC and VCT treatments had similar nutrient concentrations as the control. Plant nutrient content was higher in VCT100 compared to all treatments. These findings suggest that the combined application of VC and VCT, particularly at specific application rates, can enhance corn plant health, mitigate pest damage, and optimize yield potential.
Several slug species are serious pests of agriculture and are difficult to control. One popular control method is the nematode Phasmarhabditis hermaphrodita, which has been used in slug control for > 25 years. However, there are reports of it failing to reduce slug numbers and damage in the field for unknown reasons. This may be due to lack of knowledge about how P. hermaphrodita performs when applied to different soils. We therefore assessed the survival, movement and pathogenicity of P. hermaphrodita infective juveniles (IJs) when added to six different soils (compost with and without peat, clay loam, loam, sandy loam and sandy soil). The soils were either frozen or autoclaved before use to eradicate resident nematodes prior to the experiment. P. hermaphrodita survived best in autoclaved compost without peat and in experiments with frozen soils, compost with and without peat was best. Survival of P. hermaphrodita was similar in other soils. Interestingly, in peat-free compost P. hermaphrodita reproduced prolifically, which may affect the long-term success of the nematode in the field as other life stages, apart from the IJ stage, cannot infect slugs. In infection experiments we found P. hermaphrodita added to compost with peat killed slugs faster than nematodes added to a sandy clay loam or sandy soil. In movement experiments, the nematodes remained within 3 cm of the application point in each soil. In summary, soil type severely affects P. hermaphrodita survival, and the ability to kill slugs; therefore it should be assessed by farmers and gardeners before use.
Excessive nitrogen fertilization in sweet potato cultivation poses significant ecological and economic challenges in China, negatively impacting soil health by altering microbial community diversity, enzyme activities, and increasing the risk of stem nematode damage. In this study, we conducted a field trial in Northeast China, applying 0-72 kg of urea-N per hectare to brown soil under a five-year sweet potato cropping system. The results demonstrated that optimal nitrogen fertilization (64.8 kg ha-1) significantly promoted beneficial microbial populations, enhanced soil urease activity, and reduced the incidence of stem nematode disease while maintaining high sweet potato yields.
BACKGROUNDPlants emit volatile organic compounds (VOCs), which serve as critical cues for herbivorous insects to locate hosts for feeding and oviposition. Understanding how adults identify host plants is essential to develop pest management strategies, particularly for hemiedaphic insects like click beetles, the larvae of which are significant soil-dwelling pests. To investigate click beetle attraction towards plant VOCs and their relevance for oviposition, we tested the attractiveness of constitutive VOCs (emitted by intact plants) and damage-induced VOCs (released by chopped plants) from 11 plant species to male and female Agriotes sputator beetles.RESULTSAgriotes sputator beetles exhibit plant species-specific olfactory preferences, which are influenced by beetle sex and female maturity and differ between constitutive and damage-induced VOCs. Female beetles showed the greatest attraction to buckwheat VOCs, especially during their main oviposition period, whereas males were more attracted to clover and ryegrass. EAG recordings show strong female antennal responses to ryegrass, carrot, maize, wild carrot, barley, and buckwheat VOCs, while male antennae responded significantly only to peas. Antennae from female beetles show overall stronger responses to constitutive VOCs than those of males (P = 0.02).CONCLUSIONThese findings facilitate the development of new approaches for Agriotes pest management. Understanding preferred plant VOCs aids in identifying attractive semiochemicals that can be used for monitoring female beetles. Additionally, recognizing attractive plants aids wireworm management by either avoiding them in crop rotations before sensitive crops (thus reducing oviposition) or by attracting beetles to specific areas where they can be targeted by control measures. (c) 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
The increasing expenses and environmental repercussions associated with phosphorus (P) fertiliser underscore the necessity for precision-managed application methods. These changes affect pastoral systems, where cool-season grasses like perennial ryegrass and meadow fescue form beneficial relationships with Epichlo & euml; endophytes. Understanding how fertilisers influence these endophytes, host grasses, and insect pests is crucial, as Epichlo & euml; endophytes enhance resistance to some herbivorous insects. This study examined the indirect impact of various P fertiliser regimes on cool-season grasses, which serve as food sources for porina larvae (Wiseana copularis), a significant pasture pest in New Zealand. Endophyte-infected (Epichlo & euml; sp. LpTG-3 strain AR37) perennial ryegrass and meadow fescue infected with E. uncinata (strain MaxR (AR1017)), alongside their endophyte-free counterparts were grown in P-enriched soil with varying Olsen P levels (9, 18, 28, and 78 mg/L). Freeze-dried foliage was added to semi-synthetic diets and fed to porina larvae in a no-choice assay. Measurements included diet consumption, porina survival, weight gain. Measurements in foliage included fungal alkaloid concentration, fungal biomass, and plant nutrient levels. Endophyte infection of AR37 and MaxR significantly reduced porina diet consumption, larval weight gain and survival irrespective of soil Olsen P levels to the plant. Loline alkaloid concentration in MaxR-infected herbage increased with increasing soil Olsen P levels while fungal mass remained unchanged. In endophyte-free grasses, porina larvae significantly increased their diet consumption, weight gain and survival as the Olsen P level available to the host plant increased. While endophyte strains AR37 and MaxR continue to protect their hosts under different Olsen P regimes, these results suggest that the improved performance of porina on endophyte-free plants is largely driven by P-induced changes in food quality. Here, we discuss the implications of porina damage in New Zealand pastures in the context of decreasing P availability.
Radish is a widely cultivated popular and economically important vegetable that can be consumed both as raw as well as in cooked form. However, its production is severely impacted by flea beetles almost round the year. The adults feed on leaves and larvae on roots. Numerous small shot holes on the leaves and dark stripes on the roots are the typical damage symptoms caused by beetle infestation. The biology, molecular taxonomy, damage severity and management of the Phyllotreta striolata along with economics have been studied. In the present study, an integrated organic pest management module was evaluated to control this nefarious pest in the present experiment which includes the following approaches: soil application of neem cake @ 500 kg/ha before radish seed sowing, inter-cropping with Indian mustard every alternate 8 rows as a trap crop 15 days before radish sowing, application of vermicompost enriched with Metarhizium anisopliae @ 10 g/kg of vermicompost during seed sowing; soil application of Heterorhabditis indica @ 10 kg/ha mixed with moist sand with light irrigation, need-based foliar spraying of Metarhizium anisopliae + Neem oil @ 2.5 g/lit + 2.5 ml/lit at 25 and 45 days after sowing (DAS) and Azadirachtin 300 ppm @ 5 ml/lit at 35 DAS were found significantly effective (P < 0.0001) in reducing number of shot holes (37.64/leaf), stripes on radish (7.37/root), population of adults (2.61/plant) and larvae (2.9 on radish root and rhizosphere) compared to farmers' practices (58.09, 16.48, 3.67 and 5.6, respectively) and untreated control plots (139.37, 32.46, 7.58 and 8.3, respectively) at 21 DAS. The organic IPM module had highest root yield (19.3 t/ha) accompanied by highest incremental cost benefit ratio (ICBR) of 1:2.81 followed by farmers' practices (13.9 t/ha and ICBR = 1:2.29) and untreated control (8.4 t/ha and ICBR = 1:1.92). The developed organic pest management module was found highly promising in management of radish flea beetle.
Colorado potato beetle, Leptinotarsa decemlineata, wireworms and white grubs are important pests of potato that are challenging to manage. This study evaluated three endemic entomopathogenic nematodes (EPNs) (Steinernema carpocapsae 'NY01', S. feltiae 'NY04', and Heterorhabditis bacteriophora 'Oswego') as biocontrol agents against L. decemlineata, wireworms and white grubs in New York. The efficacy of individual EPN species and their combinations on L. decemlineata larval mortality was assessed via soil-based bioassays in the laboratory. Additionally, L. decemlineata survival and percentage of tubers damaged by wireworms and white grubs were evaluated in field trials in which combinations of pairs of EPN species were applied to the soil at least one month prior to initiating the experiment. Results from bioassays indicated that among the three EPN species, L. decemlineata late instars were most susceptible to H. bacteriophora 'Oswego'. Additionally, larval mortality was generally higher (14% on average) using pairs of EPN species compared to single species. Soil applications of pairs of EPN species prior to potato planting did not affect L. decemlineata adult survival either during the summer or following spring. However, tuber damage caused by wireworms and white grubs was reduced by 40% using a combination of H. bacteriophora 'Oswego' and S. feltiae 'NY04'. Overall, EPNs applied in soil have potential as biocontrol agents for soil-dwelling pests like wireworms and white grubs in potato, and their efficacy also may extend beyond a single cropping season, but do not seem to be an effective tool for L. decemlineata management in potato.