Lunar exploration has attracted considerable attention, with the lunar poles emerging as the next exploration hot spot for the cold trapping of volatiles in the permanently shadowed regions (PSRs) at these poles. Remote sensing via the satellite's optical load is one of the most important ways to get the scientific data of PSRs. However, the illumination conditions at the lunar poles are quite different from the low latitude areas and how to get appropriate optical signal remains challenging. Thus, simulation of the optical remote sensing process, which provides reference for the choice of satellites' imaging parameters to ensure the implementation of lunar exploration project, is of great value. In this article, an optical imaging chain modeling for the PSRs at the lunar south pole, which includes lunar 3-D topography, observing satellite's orbit, instrument's parameters, and other environmental parameters, has been built. To demonstrate the physical accuracy, some PSRs' observations acquired by narrow angle cameras (NACs) equipped on the lunar reconnaissance orbiter (LRO) are compared with the corresponding images simulated by the proposed imaging chain model. The digital value's difference between the simulated images and real captured images is generally less than 50 for 12-bit images ranging from 0 to 4095, indicating a good fit considering the uncertainty of soil's absolute reflectance and the noise in the real captured images. In addition, the impact of the imaging chain's parameters is revealed with the proposed algorithm. The simulation method will provide reference and assist future optical imaging of PSRs.
The shape, size, and abundance of rocks on the Moon's surface are essential for understanding impact cratering and weathering processes, interpreting remote sensing observations, and ensuring landing safety and rover trafficability. In most previous studies, rock information was extracted from optical images using visual identification or automatic detection methods. However, optical images cannot provide 3-D information on rocks and cannot be used in lunar permanently shadowed regions (PSRs), where rock information is critical to deciphering anomalously high radar echoes in water ice deposit detection. In this study, we proposed an automatic method for extracting 3-D information about rocks from topography data based on the geometry and clustering tendency of lunar surface rocks. A geometric shape model for lunar surface rocks is first developed by analyzing 3196 rocks in elevation data. In the proposed approach, rocks are detected from topography data using multiscale 2-D continuous wavelet transform (2-D CWT) and Hopkins statistic, and then a 3-D shape parameter extraction method is introduced to obtain the shape information directly from the detected irregular rock boundary by a region growing-based algorithm. To demonstrate the accuracy of the method, we applied the proposed method to both the simulated and real-topography data with various spatial resolutions and vertical uncertainties. The results show that, compared with the ground truth and manual detection results, the detection rate of rocks >4 pixels in size varies from 50% to 90%, depending mainly on the vertical uncertainty of elevation data. In addition, for the first time, we provide 3-D information on surface rocks (>10 m) in lunar PSRs from topography data. Our analyses suggest that, for future missions to the lunar PSRs (e.g., China's Chang'E-7), the vertical uncertainty of elevation data needs to be better than 0.2 m in order to accurately gather 3-D information of rocks larger than 2 m. Our method can be utilized for extracting 3-D information on rocks from topography data, selecting landing sites, and guiding instrument design for future altimeters.
To confirm the presence of water on the moon, many scientists of the world are making continuous efforts through remote sensing data of different missions. In this direction, the Dual Frequency Synthetic Aperture Radar (DFSAR) sensor of the Chandrayaan-2 mis-sion adds a very important chapter which is the world's first Planetary SAR mission of fully polarimetric capability with L-and S-band. This study utilizes the L-band fully polarimetric DFSAR data of Chandrayaan-2 mission for the PolSAR parameters-based analysis and ice detection in permanently shadowed regions (PSRs) of the lunar South Polar craters. The PSR IDs SP_875930_3125710, SP_837670_3387710, and SP_874930_3578760 of the lunar South Pole were selected for the polarimetric analysis using DFSAR L -band. Based on previous studies ((Li et al., 2018), two out of three PSR Ids (SP_875930_3125710 and SP_874930_3578760) were easy to identify for surface ice. That is why only two PSR IDs were used for polarimetric SAR analysis of DFSAR data for surface ice char-acterization and detection. The hybrid polarimetric simulation was also performed to the fully polarimetric L-band data to study stokes vectors and associated child parameters for the selected study area. The analysis of polarimetric distortions confirms the persistence of the polarimetric quality of the SAR data and for this, the polarimetric distortion analysis was performed with co-pol and cross-pol chan-nels. Wave dichotomy-based Huynen decomposition and Barnes decomposition models were implemented to the fully polarimetric quad-pol DFSAR data. The eigenvalue-eigenvector-based decomposition model was also implemented to characterize the scattering behavior of the PSRs. A high correlation was obtained between Circular Polarization Ratio (CPR), entropy, and alpha for the 200 hundred points randomly collected from the image. Diversity index also showed a high positive correlation with CPR. The polarimetric quality of the data was evaluated with the scatterplot between the cross-polarimetric channels and it was observed that the L-band quad-pol data of DFSAR satisfies the criteria for PolSAR data of a monostatic SAR system. Analysis of the results obtained from the polarimetric SAR data indicated that the high volumetric scattering and CPR for the PSR ID SP_875930_3125710 may be due to ice clusters within the permanently shadowed region. Polarimetric analysis of the PSR (SP_874930_3578760) at Howarth Crater using L-band DFSAR data shows a low amount of volumetric scattering and a low CPR for most locations in the PSR. The different ranges of CPR and volume scattering for both craters indicate that polarimetric parameters and indices should be studied in conjunction with geomorphological parameters of the lunar surface, for unambiguous identification of surface ice clusters in the PSR. (c) 2022 COSPAR. Published by Elsevier B.V. All rights reserved.
The Permanently Shadowed Regions (PSRs) of the lunar south pole have never been directly sampled. To explore and discover lunar resources, the Chinese lunar south pole exploration mission is scheduled to land in direct sunlight near the PSR, where sampling and analysis will be carried out. The selection of sites for lunar landing sampling sites is one of the key steps of the mission. The main factors affecting the site selection are the distribution of PSRs, lunar surface slopes, rock distribution, light intensity, and maximum temperature. In this paper, the main factors affecting site selection are analyzed based on lunar multi-source remote sensing data. Combined with previous engineering constraints, we then propose a comprehensive multi-factor fuzzy cognition and selection model for the lunar south site selection. An analytical model based on a fuzzy cognitive map algorithm is also established. Furthermore, to make a preliminary landing area selection, we determine the evaluation index for the candidate landing areas using fuzzy reasoning. Using the proposed model and combined scoring index, we also verify and analyze the prominent impact craters at the lunar south pole. The scores of de Gerlache (88.48 degrees S 88.34 degrees W), Shackleton (89.67 degrees S 129.78 degrees E), and Amundsen (84.5 degrees S, 82.8 degrees E) craters are determined using fuzzy interference as 0.816, 0.814, and 0.784, respectively. Moreover, using our proposed approach, we identify feasible landing sites around the de Gerlache crater close to the PSR to facilitate discovery of water ice exposures in future missions. The proposed method is capable of evaluating alternative landing zones subject to multiple engineering constraints on the Moon or Mars based on the existing data.
Owing to the Moon's rough surface, there is a growing controversy over the conclusion that water ice exists in the lunar permanently shadowed regions (PSRs) with a high circular polarization ratio (CPR). To further detect water ice on the Moon, an innovative design method for spaceborne synthetic aperture radar (SAR) system is proposed, to obtain radar data that can be used to distinguish water ice from lunar regolith with a small difference in the dielectric constants. According to Campbell's dielectric constant model and the requirement that SAR radiometric resolution is smaller than the contrast of targets in images, a newly defined SAR system function involved in the method is presented to evaluate the influence of some system parameters on the water ice detection capability of SAR. In addition, several simulation experiments are performed, and the results demonstrate that the presented SAR design method may be helpful for lunar water ice exploration.
Laser altimeters are capable of achieving fine mapping of the permanently shadowed regions (PSRs) of the Moon, which can provide fundamental topographic data for planetary missions. However, various factors can cause uncertainty in the geolocation of laser spots, which in turn causes terrain artifacts. In this article, we present an iterative self-constrained adjustment method to reduce the uncertainty of laser spot positioning. First, grid search was conducted for each altimetric profile from the lunar orbiter laser altimeter (LOLA), to minimize the weighted root-mean-square error (RMSE), constrained by the other altimetric profiles. Second, the updated profiles were iteratively adjusted until the adjustment value for the plane position converged. In addition, statistics from the standardized de-trended slope and residual were created to eliminate outliers, which were indeed some pseudo-topographic observations. In order to validate the results, the deviation of the elevation by projecting the adjusted laser profiles onto the improved LOLA digital elevation model (DEM) were calculated. The mean absolute error between the two is 0.25 m and the RMSE is 0.46 m. For the local terrain features with large differences, high resolution optical images were used for visual interpretation. The analysis shows that the obtained results appear to be more reasonable. Finally, using the corrected LOLA altimetric data, we made a new DEM of the PSRs within 89 & DEG;S of the lunar south pole, which can provide a refined and reliable topographic dataset for follow-up research.
Near-surface temperatures of permanently shadowed regions (PSRs) on the Moon provide fundamental information for water ice exploration. Seasonal temperature variations of PSRs are found in both Chang'E-2 microwave radiometer data and Diviner Lunar radiometer observations. Furthermore, unusual microwave brightness temperature variations between February 2011 and May 2011 of double-shaded PSRs are shown in the Chang'E-2 observational data, i.e., that the minimum microwave brightness temperature occurs before the time when the infrared brightness temperature reaches the minimum in double-shaded PSRs. To interpret this phenomenon, the 1-D thermal model and the microwave radiation transfer model are used. In the thermal model, the reradiation energy from the illuminated area is estimated by effective solar irradiance, which is an analytic solution for the radiative equilibrium temperature in the shadowed area of a spherical bowl-shaped crater. In the simulation, an assumed internal 0.4 W/m(2) heat flow beneath the lunar surface made a plausible fit to the unusual variations during some lunations. However, this is a huge value compared with the well-known heat flow value of about 0.018 W/m(2). Furthermore, it is difficult to obtain this extra heat energy by lateral conduction below the surface in a large impact crater due to the small thermal conductivity of the lunar regolith. Finally, the unusual microwave brightness temperature (TB) changes are concluded to be caused by a calibration problem after excluding other possible reasons. In addition, a statistical correction method is applied to revise the problematic TB data to obtain the proper variation trend of the brightness temperature.
Permanently shadowed regions (PSRs) at the lunar poles pique scientific interest on account of their cold trapping of volatiles that is highly relevant in the current scope of lunar exploration. Interiors of PSRs are largely unknown due to the challenging illumination conditions. In this letter, we describe a method for synthesizing images at PSRs based on the knowledge of incident solar illumination geometry and local topography that reflects light into PSRs.