共检索到 10

Mastering the mechanical properties of frozen soil under complex stress states in cold regions and establishing accurate constitutive models to predict the nonlinear stress-strain relationship of the soil under multi-factor coupling are key to ensuring the stability and safety of engineering projects. In this study, true triaxial tests were conducted on roadbed peat soil in seasonally frozen regions under different temperatures, confining pressures, and b-values. Based on analysis of the deviatoric stress-major principal strain curve, the variation patterns of the intermediate principal stress, volumetric strain and minor principal strain deformation characteristics, and anisotropy of deformation, as well as verification of the failure point strength criterion, an intelligent constitutive model that describes the soil's stress-strain behavior was established using the Transformer network, integrated with prior information, and the robustness and generalization ability of the model were evaluated. The results indicate that the deviatoric stress is positively correlated with the confining pressure and the b-value, and it is negatively correlated with the freezing temperature. The variation in the intermediate principal stress exhibits a significant nonlinear growth characteristic. The soil exhibits expansion deformation in the direction of the minor principal stress, and the volumetric strain exhibits shear shrinkage. The anisotropy of the specimen induced by stress is negatively correlated with temperature and positively correlated with the bvalue. Three strength criteria were used to validate the failure point of the sample, and it was found that the spatially mobilized plane strength criterion is the most suitable for describing the failure behavior of frozen peat soil. A path-dependent physics-informed Transformer model that considers the physical constraints and stress paths was established. This model can effectively predict the stress-strain characteristics of soil under different working conditions. The prediction correlation of the model under the Markov chain Monte Carlo strategy was used as an evaluation metric for the original model's robustness, and the analysis results demonstrate that the improved model has good robustness. The validation dataset was input to the trained model, and it was found that the model still exhibits a good prediction accuracy, demonstrating its strong generalization ability. The research results provide a deeper understanding of the mechanical properties of frozen peat soil under true triaxial stress states, and the established intelligent constitutive model provides theoretical support for preventing engineering disasters and for early disaster warning.

期刊论文 2025-08-01 DOI: 10.1016/j.coldregions.2025.104496 ISSN: 0165-232X

To investigate the mechanical properties of frozen peat soil derived from Dianchi Lake's lacustrine deposits, a low-temperature triaxial shear test was conducted under various influencing factors, utilizing an improved TSZ-2 fully automatic strain control instrument. This study aimed to examine the mechanical behavior of frozen peat soil at different temperatures, confining pressures and moisture levels. Additionally, the binary medium model theory was introduced to analyze the deviatoric stress-strain relationship in frozen soil. The test results indicate that as strain increases, the deviatoric stress-strain curve divides into three stages: linear-elastic, elastic-plastic and stable stages. The volume deformation primarily involves bulk expansion, and the deformation characteristics of frozen peat soil can be explained using a binary medium model. The peak strength of frozen peat soil is positively correlated with confining pressure and moisture content, but negatively correlated with temperature. In the experimental setup, the impact of confining pressure on strength initially rises and then declines, while moisture content exhibits higher sensitivity to strength. Cohesion increases as temperature decreases, and the internal friction angle fluctuates between 20.56 degrees and 24.89 degrees. Based on the simplified binary medium model, the equations suitable for frozen peat soil are constructed and the results are verified with good applicability.

期刊论文 2025-01-01 DOI: 10.16285/j.rsm.2024.0316 ISSN: 1000-7598

Researchers have explored various materials and methods to improve the strength and stabilization of peat soil for construction. Deep peat soil's significant compressibility, low bearing capacity, and high creep potential present major challenges in geotechnical engineering. In this paper, the unconfined compression strength (UCS) and oedometer testing were conducted to determine peat strength and compressibility behavior after being stabilized with a bio-cement called vege-grout, derived from fermented vegetable waste. Soil stabilized with 5 %, 10 %, 15%, 20%, and 25% vege grout was cured for up to 8 weeks before undergoing UCS testing. The finding showed that, in between 4 and 6 weeks of the curing period, the UCS of the peat stabilized with vege-grout exhibiting substantial mechanical strength at all vege-grout inclusion levels. The results showed optimum strength improvements, with a 449 % increase in UCS at 15 % vege-grout after 8 weeks. At the optimal percentage, vege grout's cementitious properties bind peat particles, densify the matrix, and enhance soil strength and load-bearing capacity. The coefficient of consolidation (Cv) also improved, reducing settlement from 23.34 +/- 7.8 m2/year to 7.13 +/- 3.5 m2 per year over increasing effective stress. The significant improvement in strength and compressibility of peat after treatment with 15 % vege grout demonstrates the effectiveness of vege grout as a peat stabilizer and highlights its potential as an alternative to chemical stabilizers for foundation applications.

期刊论文 2024-12-01 DOI: 10.1016/j.rineng.2024.103524 ISSN: 2590-1230

Peat oxidation in peat meadow areas is causing greenhouse gas emissions as well as land subsidence. Due to yearly fluctuations in soil surface level, long-term monitoring is needed to determine long-term net subsidence rates. In the experimental peat-meadow farm at Zegveld (NL) subsidence platens were installed in 1970 in a field with low ditchwater level, and in 1973 in a field with high ditchwater level. Platens were installed at 7 different depths, allowing to investigate where in the peat profile subsidence occurs. Elevation of platens as well as soil surface has been measured with surveyor's levelling each year at the end of winter, so that a long timeseries up to 2023 is available. Analysis showed that surface level in the field with high ditchwater level subsided by 24 cm in 50 years (4.8 mm/yr), while in the field with low ditchwater level this was 31 cm in 53 years (5.8 mm/yr). Results also indicated that in the field with low ditchwater level, most subsidence due to permanent shrinkage and peat oxidation occurred between 40 and 100 cm depth, while for the other field this was between 0 and 20 and between 40 and 60 cm depth. Finally, in 2023 subsidence was still observed under continuously saturated conditions at 140 cm depth. Presumably, in the aerated part of the profile peat oxidation and the associated earthification process is the main cause of subsidence, while the observed subsidence in the saturated soil at 140 cm depth must be due to other processes, such as consolidation and creep.

期刊论文 2024-10-01 DOI: 10.1016/j.geoderma.2024.117039 ISSN: 0016-7061

For the problems of high compressibility and low strength of peat soil formed by lake-phase deposition in Dianchi Lake, microbial-induced calcium carbonate deposition (MICP), phyto-urease-induced calcium carbonate deposition (EICP) and phyto-urease-induced calcium carbonate deposition combined with lignin (EICP combined with lignin) were used to reinforce the peat soil, the changes in mechanical properties of the soil before and after the reinforcement of the peat soil were experimentally investigated, and the effect and mechanism of peat soil reinforcing by the three reinforcing techniques were tested and analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that: compared to the unreinforced remolded peat soil specimens, the unconfined compressive strength (UCS), cohesion and internal friction angle of the specimens reinforced by MICP, EICP and EICP combined with lignin techniques have been greatly improved, and the permeability resistance has been improved by two, two and three orders of magnitude, respectively; the different methods of reinforcing generate different calcium carbonate crystalline phases, with the EICP combined with lignin technique generating the most stable calcite, and the MICP and EICP techniques generating a mixed phase of calcite and spherulitic chalcocite. Analyses showed that for peat soil reinforcement, the acidic environment of peat soil inhibited the growth and reproduction of bacteria, EICP technology was superior to MICP technology, and the addition of lignin solved the defect of the EICP technology that did not have a nucleation site, so EICP combined with lignin reinforcement was preferred for the improvement of peat soil.

期刊论文 2024-09-01 ISSN: 2288-6605

Peat soil exhibits significant creep deformation, and its consolidation law differs from that of soft soil. This study examines the strain characteristics of peat soils during three stages of consolidation using indoor one-dimensional creep consolidation tests. The results showed that the rebound deformation after the primary consolidation stage and the secondary consolidation stage is equivalent to the deformation seen during the primary consolidation stage, about 1.003 times. However, once the deformation stabilizes, the rebound deformation decreases to 0.32-0.85 times that of the deformation observed during the primary consolidation stage. The elastic and time-independent plastic strains of the peat soil showed two-stage linear changes with ln sigma(z)'. When the load was greater than the pre-consolidation pressure, the deformation modulus increases by approximately 2.10 and 1.56 times, respectively. On this basis, this study, for the first time, defines the creep rate according to the strain rate in the tertiary consolidation stage in the strain versus the time curve (epsilon(z) similar to t). Based on the timeline, a one-dimensional creep consolidation model is established that can accurately predict the strain during the consolidation of the peat soil foundation. The results reveal distinct strain behaviors during each stage and improve the theoretical basis for the study of creep.

期刊论文 2024-09-01 DOI: 10.3390/app14177990

Permafrost stability is significantly influenced by the thermal buffering effects of snow and active-layer peat soils. In the warm season, peat soils act as a barrier to downward heat transfer mainly due to their low thermal conductivity. In the cold season, the snowpack serves as a thermal insulator, retarding the release of heat from the soil to the atmosphere. Currently, many global land models overestimate permafrost soil temperature and active layer thickness (ALT), partially due to inaccurate representations of soil organic matter (SOM) density profiles and snow thermal insulation. In this study, we evaluated the impacts of SOM and snow schemes on ALT simulations at pan-Arctic permafrost sites using the Energy Exascale Earth System Model (E3SM) land model (ELM). We conducted simulations at the Circumpolar Active Layer Monitoring (CALM) sites across the pan-Arctic domain. We improved ELM-simulated site-level ALT using a knowledge-based hierarchical optimization procedure and examined the effects of precipitation-phase partitioning methods (PPMs), snow compaction schemes, and snow thermal conductivity schemes on simulated snow depth, soil temperature, ALT, and CO2 fluxes. Results showed that the optimized ELM significantly improved agreement with observed ALT (e.g. RMSE decreased from 0.83 m to 0.15 m). Our sensitivity analysis revealed that snow-related schemes significantly impact simulated snow thermal insulation levels, soil temperature, and ALT. For example, one of the commonly used snow thermal conductivity schemes (quadratic Sturm or SturmQua) generally produced warmer soil temperatures and larger ALT compared to the other two tested schemes. The SturmQua scheme also amplified the model's sensitivity to PPMs and predicted deeper ALTs than the other two snow schemes under both current and future climates. The study highlights the importance of accurately representing snow-related processes and peat soils in land models to enhance permafrost dynamics simulations.

期刊论文 2024-05-01 DOI: 10.1088/1748-9326/ad38ce ISSN: 1748-9326

Changes in water content have a significant impact on the consolidation of peat soil. Through the water content test and thermogravimetric analysis test, the water content, and the free water, weakly bonded water and strongly bonded water content of peat soil with different organic content in Yunnan Province (China) at different load levels and consolidation times were studied. The results show that the free water in peat soil samples was discharged when the temperature was less than 60 degrees C; the weakly bound water was released at 60 - 110 degrees C; and the strongly bound water was dehydrated at 110 - 200 degrees C. During the consolidation of peat soil, the water content in different states changed significantly. In the primary consolidation stage, the proportion of free water in the peat soil samples decreased by approximately 20%, while the proportion of weakly bound water increased slightly. In the secondary consolidation stage, the proportion of water in different states did not change considerably. In the third consolidation stage, the proportion of free water increased, and the proportion of weakly bonded water causing creep decreased by approximately 11%. For the undisturbed and deformed peat soil, the contents of free water and bound water increased with increasing total water content, but the ratio of free water to bound water remained relatively stable at approximately 1:2.

期刊论文 2024-01-01 DOI: 10.1007/s10064-023-03505-9 ISSN: 1435-9529

The influence of the moisture content on the CO2 emission from peat soils of palsa mires in the discontinuous permafrost area was studied in the north of Western Siberia (Nadym region). The CO2 flux was measured in Histic Cryosols of permafrost peatlands (palsas) and Fibric Histosols of surrounding bog using the closed chamber method for four years at the peak of the growing season (August). Despite a significant difference in the soil moisture (34.8 +/- 13.2 and 56.2 +/- 2.1% on average), no significant difference in the CO2 emission from these ecosystems was found in any of the observation years; the rates of emission averaged 199.1 +/- 90.1 and 182.1 +/- 85.1 mg CO2 m(-2) x h(-1), respectively. Experimental wetting or drying (with a twofold difference in the moisture content) of peat soils at the two sites via their transplantation to a different position showed no significant effect on the CO2 emission even three years after the beginning of the experiment. The absence of significant differences in the CO2 flux between the two different ecosystems was explained by the presence of permafrost and the influence of many multidirectional factors mitigating changes in the CO2 production by soils. An increased CO2 emission from the peat soils of bogs was possible due to the additional contribution of the methanotrophic barrier and the lateral runoff of dissolved CO2 over the permafrost table from the palsa toward the surrounding bog. The absence of response of the CO2 emission to a significant change in the soil moisture content may be indicative of a wide optimum of this characteristic for the microbiological activity of peat soils in the studied region. The obtained data suggest that, while studying CO2 fluxes in cryogenic soils of hydromorphic landscapes, it is necessary to take into account not only biogenic sources, but also other factors, often of a physical nature, affecting the balance of CO2 fluxes and CO2 emission from soils.

期刊论文 2023-04-01 DOI: 10.1134/S1064229322602530 ISSN: 1064-2293

Humic substances (HSs) from themire peat soils of the forest-tundra zone of the European northeast part of Russia have been characterized in terms of molecular composition. This was accomplished using solid-state C-13 nuclear magnetic resonance (C-13 NMR) techniques and electron spin resonance (ESR) spectroscopy. The composition depended on the intensity of cryogenic processes in the active layer, the quality of the humification precursors (the degree of peat material transformation), and the biochemical selection of aromatic fragments during humification. Humic acids (HAs) and fulvic acids (FAs) of the peat soils showed the presence of compounds with a low extent of condensation and a low portion of aromatic fragments, which increased with depth. A higher proportion of aliphatic carbon species was found in the HAs, indicating a low degree of organic matter stabilization. Based on the data from the two types of peat soils, we suggest that particular changes in the proportion of aromatic and unoxidized aliphatic fragments on the border of the bottom of the active layer and permafrost layers can be used as markers of current climatic change. (C) 2017 Elsevier B.V. All rights reserved.

期刊论文 2018-02-15 DOI: 10.1016/j.scitotenv.2017.10.053 ISSN: 0048-9697
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-10条  共10条,1页