The effectiveness of zeolitic tuff (ZT) based geopolymer stabilization as a sustainable alternative to conventional cement stabilization for expansive soils is investigated in this study. Mechanical and geotechnical properties of geopolymer stabilized soil are evaluated in terms of ZT content, sodium silicate to sodium hydroxide (NS:NH) ratio and curing time. Soil improvement was assessed by laboratory tests, unconfined compressive strength (UCS), plasticity, compaction, and free swell tests. The test results show that the geopolymer stabilization increases the UCS significantly, as the NS:NH=2:1 mixture attains the maximum UCS of about 5.0 MPa in 28 days of curing, representing a 40 % increase over 12 % cement-stabilized soil. Furthermore, geopolymer-stabilized soils show a higher swelling reduction with free swell percentages as low as 0.25 %, a 42 % improvement compared to cement. The environmental assessment shows a 19 % lower CO2 emission per MPa of strength for geopolymer stabilization compared to cement-based stabilization, making it an eco-friendly choice. Pavement performance analysis using the Mechanistic-Empirical Pavement Design Guide (MEPDG) indicates that geopolymer-stabilized subbase layers improve structural integrity while reducing overall pavement rutting and fatigue cracking. Scanning Electron Microscopy (SEM) results validate the creation of a dense geopolymer matrix structure that enhances the strength and stability characteristics of soil materials. The study concludes that geopolymer stabilization using ZT with optimized NS:NH ratios delivers effective, high-performing, environmentally sustainable alternatives to traditional cement.
Asphalt pavements are subjected to both repeated vehicle loads and erosive deterioration from complicated environments in service. Salt erosion exerts a serious negative impact on the service performance of asphalt pavements in salt-rich areas such as seasonal frozen areas with snow melting and deicing, coastal areas, and saline soils areas. In recent years, the performance evolution of asphalt materials under salt erosion environments has been widely investigated. However, there is a lack of a systematic summary of salt erosion damage for asphalt materials from a multi-scale perspective. The objective in this paper is to review the performance evolution and the damage mechanism of asphalt mixtures and binders under salt erosion environments from a multi-scale perspective. The salt erosion damage and damage mechanism of asphalt mixtures is discussed. The influence of salt categories and erosion modes on the asphalt binder is classified. The salt erosion resistance of different asphalt binders is determined. In addition, the application of microscopic test methods to investigate the salt damage mechanism of asphalt binders is generalized. This review finds that the pavement performance of asphalt mixtures decreased significantly after salt erosion. A good explanation for the salt erosion mechanism of asphalt mixtures can be provided from the perspective of pores, interface adhesion, and asphalt mortar. Salt categories and erosion modes exerted great influences on the rheological performance of asphalt binders. The performance of different asphalt binders showed a remarkable diversity under salt erosion environments. In addition, the evolution of the chemical composition and microscopic morphology of asphalt binders under salt erosion environments can be well characterized by Fourier Infrared Spectroscopy (FTIR), Gel Permeation Chromatography (GPC), and microscopic tests. Finally, the major focus of future research and the challenges that may be encountered are discussed. From this literature review, pore expansion mechanisms differ fundamentally between conventional and salt storage asphalt mixtures. Sulfate ions exhibit stronger erosive effects than chlorides due to their chemical reactivity with asphalt components. Molecular-scale analyses confirm that salt solutions accelerate asphalt aging through light-component depletion and heavy-component accumulation. These collective findings from prior studies establish critical theoretical foundations for designing durable pavements in saline environments.
In cold regions, the seasonal freeze-thaw cycles constitute a significant challenge for pavement, leading to structural impairments and diminished long-term performance. During winter, the frozen water and ice formations increase pavement stiffness and bearing capacity. However, during the spring thaw, the liquid water above the frozen layer can be trapped by the impermeable frozen soil. This leads to a reduction in soil shear strength and pavement bearing capacity, resulting in deformations and damage to the roads. To mitigate these costs, Spring/Seasonal Load Restrictions (SLRs) policies have been implemented to limit axle loads and protect roads during the thaw-weakening. The success of SLR policies depends on an accurate estimation of the start date and duration of the reduced bearing capacity period. SLRs should also strike a balance between minimizing pavement damage and allowing traffic to flow freely as possible. This paper presents a comprehensive review of the existing SLR practices anssociated with their underlying mechanisms and different categories. SLR practices in Northern America are also summarized to evaluate the industry standards. In-depth discussions are added at the end based on this review to highlight the knowledge gaps and drawbacks of the current state of the practice.
Fly ash (FA) and granulated blast furnace slag (GBFS) were used as a precursor for geopolymerization to develop a low-carbon pavement base construction material. Based on the orthogonal test method, three levels were set separately for the L9 (34) test considering the proportion of FA (raw fly ash to grained fly ash), ratio of sodium hydroxide to liquid alkaline activator (LAA), and proportion of GBFS mixed with FA and solid-liquid ratio [(FA + GBFS): LAA] as factors influencing the geopolymer. The influence of these factors on the unconfined compressive strength (UCS) of soil stabilized by geopolymer was studied. The optimal combinations of levels and factors were determined. The UCS with these ratios combined was 5.1 MPa. According to the above compositions, the mechanical (UCS, splitting tensile strength, and flexural tensile strength) and durability (drying shrinkage, water stability, freezing and thawing resistance, and wet-dry cycle) properties of soil samples stabilized using the aforementioned geopolymer were investigated. Moreover, scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis were performed to determine the effect of the change in hydration silicate gel in the UCS development. According to the SEM and XRD test results, hydrated silicate gels exist in the sample, filling the pores of the soil, making the soil more compact, bonding the soil particles, and enhancing the engineering performance of the soil. This study enables waste material utilization as a replacement and partially reactive material in pavement applications.
Maintaining desired subgrade performance is an effective way to reduce runway pavement deterioration. Due to lack of extensive field test data, life-cycle performance of runway subgrade has not been fully understood. In order to quantitatively estimate subgrade condition, a novel method of evaluating subgrade performance was developed and validated using the 726 sets of Heavy Weight Deflectometer (HWD) test data of ten runway sections. Statistical analysis demonstrates that the structural behaviour of rigid runway subgrade follows normal distribution in different service stages and can be efficiently evaluated by the subgrade performance index (psi). The results of factor analysis show that Accumulated Air Traffic Volume (ATV) during service life is the major cause of spatial variations in subgrade condition. In the designed service period of runway, it validates that sea-reclaimed subgrade results in faster degradation in the initial stage of service life while thicker pavement exhibits better capability in protecting the subgrade soil in long-term view. Besides, the differences in applied loads and pavement thickness give rise to the subgrade performance variation in longitudinal direction. Meanwhile, the comparison between the main and the less trafficked test lines in transversal direction reveals that the aircraft impacts play a positive role in resisting the natural fatigue process. By the suggested method, subgrade performance of HWD test points can be categorized into 4 levels from Excellent, Good, Fair to Poor based on psi value. It is helpful for airport agency to make scientific decisions on Maintenance and Rehabilitation (M&R) treatment by calculating the effective area of envelope (beta) using the ratio of subgrade performance (eta).