The freeze-thaw cycle of near-surface soils significantly affects energy and water exchanges between the atmosphere and land surface. Passive microwave remote sensing is commonly used to observe the freeze-thaw state. However, existing algorithms face challenges in accurately monitoring near-surface soil freeze/thaw in alpine zones. This article proposes a framework for enhancing freeze/thaw detection capability in alpine zones, focusing on band combination selection and parameterization. The proposed framework was tested in the three river source region (TRSR) of the Qinghai-Tibetan Plateau. Results indicate that the framework effectively monitors the freeze/thaw state, identifying horizontal polarization brightness temperature at 18.7 GHz (TB18.7H) and 23.8 GHz (TB23.8H) as the optimal band combinations for freeze/thaw discrimination in the TRSR. The framework enhances the accuracy of the freeze/thaw discrimination for both 0 and 5-cm soil depths. In particular, the monitoring accuracy for 0-cm soil shows a more significant improvement, with an overall discrimination accuracy of 90.02%, and discrimination accuracies of 93.52% for frozen soil and 84.68% for thawed soil, respectively. Furthermore, the framework outperformed traditional methods in monitoring the freeze-thaw cycle, reducing root mean square errors for the number of freezing days, initial freezing date, and thawing date by 16.75, 6.35, and 12.56 days, respectively. The estimated frozen days correlate well with both the permafrost distribution map and the annual mean ground temperature distribution map. This study offers a practical solution for monitoring the freeze/thaw cycle in alpine zones, providing crucial technical support for studies on regional climate change and land surface processes.
Accurately determining the freeze/thaw state (FT) is crucial for understanding land-atmosphere interactions, with significant implications for climate change, ecological systems, agriculture, and water resource management. This article introduces a novel approach to assess FT dynamics by comparing the new diurnal amplitude variations (DAV) algorithm with the traditional seasonal threshold algorithm (STA) based on the soil moisture active passive (SMAP) brightness temperature data. Utilizing soil temperature profiles from 44 sites recorded by the National Ecological Observatory Network between July 2019 and June 2022. The results reveal that the DAV algorithm demonstrates a remarkable potential for capturing FT signals, achieving an average accuracy of 0.82 (0.89 for the SMAP-FT product) across all sites and a median accuracy of 0.94 (0.92 for the SMAP-FT product) referring to soil temperature at 0.02 m. Notably, the DAV algorithm outperforms the SMAP-adopted STA in 25 out of 44 sites. The accuracy of the DAV algorithm is affected by daily temperature fluctuations and geographical latitudes, while the STA exhibits limitations in certain regions, particularly those with complex terrains or variable climatic patterns. This article's innovative contribution lies in systematically comparing the performance of the DAV and STA algorithms, providing valuable insights into their respective strengths and weaknesses.
Estimating the landscape and soil freeze-thaw (FT) dynamics in the Northern Hemisphere (NH) is crucial for understanding permafrost response to global warming and changes in regional and global carbon budgets. A new framework for surface FT-cycle retrievals using L-band microwave radiometry based on a deep convolutional autoencoder neural network is presented. This framework defines the landscape FT-cycle retrieval as a time-series anomaly detection problem, considering the frozen states as normal and the thawed states as anomalies. The autoencoder retrieves the FT-cycle probabilistically through supervised reconstruction of the brightness temperature (TB) time series using a contrastive loss function that minimizes (maximizes) the reconstruction error for the peak winter (summer). Using the data provided by the Soil Moisture Active Passive (SMAP) satellite, it is demonstrated that the framework learns to isolate the landscape FT states over different land surface types with varying complexities related to the radiometric characteristics of snow cover, lake-ice phenology, and vegetation canopy. The consistency of the retrievals is assessed over Alaska using in situ observations, demonstrating an 11% improvement in accuracy and reduced uncertainties compared to traditional methods that rely on thresholding the normalized polarization ratio (NPR).
Among the essential tools to address global environmental information requirements are the Earth-Observing (EO) satellites with free and open data access. This paper reviews those EO satellites from international space programs that already, or will in the next decade or so, provide essential data of importance to the environmental sciences that describe Earth's status. We summarize factors distinguishing those pioneering satellites placed in space over the past half century, and their links to modern ones, and the changing priorities for spaceborne instruments and platforms. We illustrate the broad sweep of instrument technologies useful for observing different aspects of the physio-biological aspects of the Earth's surface, spanning wavelengths from the UV-A at 380 nanometers to microwave and radar out to 1 m. We provide a background on the technical specifications of each mission and its primary instrument(s), the types of data collected, and examples of applications that illustrate these observations. We provide websites for additional mission details of each instrument, the history or context behind their measurements, and additional details about their instrument design, specifications, and measurements.
Accurate delineation of spatiotemporal variations in ground surface soil freeze and thaw (F/T) states is essential to appraise many geoscience issues, such as the hydrological circulation and land surface-atmosphere feedbacks. Recently, an Improved Dual-index algorithm (DIA) method was proposed by accounting for the influence of soil moisture variations on the discrimination accuracy with passive microwave remote sensing (RS) data products. Compared with the original DIA, the Improved DIA method has proven to be a more practical approach on surface soil F/T states discrimination. However, the method has only been applied and verified in cold regions of high-altitude (e.g., Tibetan Plateau), it's applicability and effectiveness in the cold areas in mid-high latitudes, where the geographic and climatic conditions are quite different, yet remained to be further explored. The present study investigated the feasibility of using AMSR-E (the Advanced Microwave Scanning Radiometer-EOS) and AMSR2 (the second Advance Microwave Scanning Radiometer) passive microwave RS data products to discriminate the F/T states of the ground surface for a long period from 2002 to 2019 by means of the Improved DIA method over a typical mid-high latitude cold region of Northeastern China. Seasonal variation characteristics of soil moisture in mid-high latitude areas were similar with those in high-altitude areas, even though the spatial heterogeneity of soil water content was significant in different regions. Discriminating surface soil F/T states with the Improved DIA method derived overall discriminating accuracy of about 91.6% in the study area, which demonstrated excellent feasibility of the Improved DIA method in mid-high latitude cold regions. The mapping results shown surface soil F/T cycle in Northeastern China responding to climate change was examined from the perspective of regional average, both the proportion of frozen soil area and frozen days showed significant decreasing trends continuously with differed quite spatially. The discriminating accuracy of the Improved DIA method was found to be lower in plain areas with dense populations and large farmland areas compared to mountainous areas when human activities were not taken into consideration, as quantifying human activities can be challenging. The Improved DIA method has been well verified in both high-altitude and high-latitude regions; it has great potential in global scale research.
On 25 June 2020, a glacial lake outburst flood (GLOF) occurred in Jinwuco, Nidou Zangbo, and southeast Tibet, causing catastrophic damage to multiple infrastructures such as roads, bridges, and farmlands in the surrounding and downstream areas. Due to the lack of long-term monitoring of glacial lake and glacier changes in the region and the surrounding surface, the spatial and temporal evolutionary characteristics and triggering factors of the disaster still need to be determined. Here, we combine multi-temporal optical remote sensing image interpretation, surface deformation monitoring with synthetic aperture radar (SAR)/InSAR, meteorological observation data, and corresponding soil moisture change information to systematically analyze the spatial and temporal evolution characteristics and triggering factors of this GLOF disaster. Optical images taken between 1987 and 2020 indicate that the glacial lake's initial area of 0.39 km(2) quickly grew to 0.56 km(2), then plummeted to 0.26 km(2) after the catastrophe. Meanwhile, we found obvious signs of slippage beside the lateral moraine at the junction of the glacier's terminus and the glacial lake. The pixel offset tracking (POT) results based on SAR images acquired before and after the disaster reveal that the western lateral moraine underwent a 40 m line of sight (LOS) deformation. The small baseline subset InSAR (SBAS-InSAR) results from 2017 to 2021 show that the cumulative deformation of the slope around the lateral moraine increased in the rainy season before the disaster, with a maximum cumulative deformation of -52 mm in 120 days and gradually stabilized after the disaster. However, there are three long-term deformation areas on the slope above it, showing an increasing trend after the disaster, with cumulative deformation exceeding -30 mm during the monitoring period. The lateral moraine collapse occurred in a warm climate with continuous and intense precipitation, and the low backscatter intensity prior to the slide suggests that the soil was very moist. Intense rainfall is thought to be the catalyst for lateral moraine collapse, whereas the lateral moraine falling into the glacier lake is the direct cause of the GLOF. This study shows that the joint active-passive remote sensing technique can accurately obtain the spatial and temporal evolution characteristics and triggering factors of GLOF. It is helpful to understand the GLOF event caused by the slide of lateral moraine more comprehensively, which is essential for further work related to glacial lake hazard assessment.
The freezing front depth (z(ff)) of annual freeze-thaw cycles is critical for monitoring the dynamics of the cryosphere under climate change because z(ff) is a sensitive indicator of the heat balance over the atmosphere-cryosphere interface. Meanwhile, although it is very promising for acquiring global soil moisture distribution, the L-band microwave remote sensing products over seasonally frozen grounds and permafrost is much less than in wet soil. This study develops an algorithm, i.e., the brightness temperature inferred freezing front (BT-FF) model, for retrieving the interannual z(ff) with the diurnal amplitude variation of L-band brightness temperature (?T-B) during the freezing period. The new algorithm assumes first, the daily-scale solar radiation heating/cooling effect causes the daily surface thawing depth (z(tf)) variation, which leads further to ?T-B; second, ?T-B can be captured by an L-band radiometer; third, z(tf) and z(ff) are negatively linear correlated and their relation can be quantified using the Stefan equation. In this study, the modeled soil temperature profiles from the land surface model (STEMMUS-FT, i.e., simultaneous transfer of energy, mass, and momentum in unsaturated soil with freeze and thaw) and T-B observations from a tower-based L-band radiometer (ELBARA-III) at Maqu are used to validate the BT-FF model. It shows that, first, ?T-B can be precisely estimated from z(tf) during the daytime; second, the decreasing of z(tf) is linearly related to the increase of z(ff) with the Stefan equation; third, the accuracy of retrieved z(ff) is about 5-25 cm; fourth, the proposed model is applicable during the freezing period. The study is expected to extend the application of L-band T-B data in cryosphere/meteorology and construct global freezing depth dataset in the future.
The freeze-thaw (F/T) process plays a significant role in climate change and ecological systems. The soil F/T state can now be determined using microwave remote sensing. However, its monitoring capacity is constrained by its low spatial resolution or long revisit intervals. In this study, spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data with high temporal and spatial resolutions were used to detect daily soil F/T cycles, including completely frozen (CF), completely thawed (CT), and F/T transition states. First, the calibrated Cyclone Global Navigation Satellite System (CYGNSS) reflectivity was used for soil F/T classification. Compared with those of soil moisture active and passive (SMAP) F/T data and in situ data, the detection accuracies of CYGNSS reach 75.1% and 81.4%, respectively. Subsequently, the changes in spatial characteristics were quantified, including the monthly occurrence days of the soil F/T state. It is found that the CF and CT states have opposite spatial distributions, and the F/T transition states distribute from the east to the west and then back to the east of the Qinghai-Tibet Plateau, which may be due to varying diurnal temperatures in different seasons. Finally, the first day of thawing (FDT), last day of thawing, and thawing period of the F/T year were analyzed in terms of the changes in temporal characteristics. The temporal variation of thawing is mainly different between the western and eastern parts of the Tibetan Plateau, which is in agreement with the spatial variation characteristics. The results demonstrate that the CYGNSS can accurately detect the F/T state of near-surface soil on a daily scale. Moreover, it can complement traditional remote sensing missions to improve the F/T detection capability. It can also expand the applications of GNSS-R technology and provide new avenues for cryosphere research.
Historical patterns of snow cover and snowmelt are shifting due to climate warming and perhaps some human activities, threatening natural water resources and the ecological environment. Passive microwave remote sensing provides quantitative data for snow mass evaluation. Here, we evaluated the long-term impact of climate warming on snowmelt rates, using snow water equivalent (SWE) datasets derived from passive microwave remotely sensed data over China's three main stable snow cover regions during the past 40 years (1981-2020). The results showed that higher ablation rates in spring were found in locations with a deeper SWE because of high snowmelt rates that occurred in late spring and early summer in areas with a deeper snowpack. Annual maximum SWE (snow water equivalent) has declined across two out of the three main mountains of China's snow cover regions over the past 40 years under climate warming. The maximum and mean snowmelt rate was ca. 30 and 3 mm/day, respectively, over the three regions. Further, due to SWE being reduced in these deep snowpack areas, moderate and high rates of snowmelt showed trends of decline after 2000. Accordingly, an earlier snow onset day (average 0.6 similar to 0.7 day/a) and slower snowmelt rates characterized the mountainous areas across the three main snow cover regions. The slower snowmelt rate is also closely related to vegetation improvement over the three main stable snow cover regions. Therefore, not only vegetation in spring but also streamflow and other ecological processes could be affected by the pronounced changes in SWE and snowmelt rates. These findings strengthen our understanding of how to better assess ecological and environmental changes towards the sustainable use of freshwater resources in spring and earlier summer months in snow-rich alpine regions.
The uncertainty of passive microwave retrievals of snowfall is notoriously high where high-frequency surface emissivity is significantly reduced and varies markedly in response to the changes in snowpack physical properties. Using the dense media radiative transfer theory, this article studies the potential effects of terrestrial snow-cover depth, density, and grain size on high-frequency channels 89 and 166 GHz of the radiometer onboard the Global Precipitation Measurement (GPM) core satellite, which are commonly used to capture snowfall scattering signals. Integrating the inference across all feasible grain sizes, ranges of snowpack density and depth are identified over which snowfall scattering signatures can be time-varying and potentially obscured. Using ten years of reanalysis data, the seasonal vulnerability of snowfall retrievals to the changes in snowpack emissivity in the Northern Hemisphere is mapped in a probabilistic sense and connections are made with the uncertainties of the GPM passive microwave snowfall retrievals. It is found that among different snow classes, relatively light Arctic tundra snow in fall, with a density below 260 kg m(-3), and shallow prairie snow during the winter, with a depth of less than 40 cm, can reduce the surface emissivity and obscure the snowfall passive microwave signatures. It is demonstrated that during winter, the highly vulnerable areas are over Kazakhstan and Mongolia with taiga and prairie snow. In the fall, these areas are largely over tundra and taiga snow in north of Russia and the Arctic Archipelagos as well as prairies in Canada and the Great Plains in the United States.