Conventional pump-and-treat technologies have demonstrated limited effectiveness in remediating soils contaminated with light non-aqueous phase liquids (LNAPLs), such as petroleum hydrocarbons. Nonconventional in-situ flushing with shear-thinning fluids, such as polymers, offers a promising alternative. However, even with polymer flushing, residual LNAPL ganglia may remain trapped in porous media, requiring further improvement of the flushing fluid to enhance remediation efficiency. In this study, we present a novel alcohol-in-biopolymer emulsion developed to enhance the recovery of residual diesel oil from porous media. Batch experiments were conducted to evaluate the partitioning behavior of fifteen different alcohols between the aqueous and diesel phases. The results revealed that 1-pentanol preferentially partitions into the diesel phase rather than the aqueous phase, leading to an increase in diesel oil volume via a swelling mechanism. Furthermore, 1-pentanol forms a stable and homogeneous emulsion when combined with an aqueous solution of the biopolymer xanthan gum, and the surfactant sodium dodecyl sulfate. The emulsion demonstrated high stability for over 30 days, ensuring its suitability for prolonged remediation processes. Rheological experiments confirmed the emulsion's shear-thinning behavior, which ensures stable and uniform displacement within porous media. A two-dimensional cell packed with silica sand was used to evaluate the efficiency of the emulsion in removing residual diesel oil. The results demonstrated that the emulsion propagates uniformly throughout the porous media, effectively achieving complete removal of residual diesel within 1.15 pore volumes of injection. Porescale visualizations revealed the swelling and subsequent mobilization of entrapped diesel ganglia induced by the emulsion, further confirming its efficacy. These findings highlight the potential of this novel alcohol-inbiopolymer emulsion to significantly improve diesel oil recovery from contaminated soils.
Evapotranspiration (ET) is a critical component of the soil-plant-atmosphere continuum, significantly influencing the water and energy balance of ecosystems. However, existing studies on ET have primarily focused on the growing season or specific years, with limited long-term analyses spanning decades. This study aims to analyse the components of ET within the alpine ecosystem of the Heihe River Basin, specifically investigating the dynamics of vegetation transpiration (T) and soil evaporation (Ev). Utilizing the SPAC model and integrating meteorological observations and eddy covariance data from 2013 to 2022, we investigate the impact of solar radiation and vegetation dynamics on ET and its partitioning (T/ET). The agreement between measured and simulated energy fluxes (net radiation and latent energy flux) and soil temperature underscores the validity of the model's performance. Additionally, a comparison employing the underlying water use efficiency method reveals consistent T/ET values during the growing season, further confirming the model's accuracy. Results indicate that the annual average T/ET during the 10-year study period is 0.41 +/- 0.03, close to the global average but lower than in warmer, humid regions. Seasonal analysis reveals a significant increase in T/ET during the growing season (April to October), particularly in May and June, coinciding with the thawing of permafrost and increased soil moisture. In addition, the study finds that the leaf area index and canopy stomatal conductance exhibit a logarithmic relationship with T/ET, whereas soil temperature and downward longwave radiation show an exponential relationship with T/ET. This study highlights the importance of understanding the stomatal conductance dynamics and their controls of transpiration process within alpine ecosystems. By providing key insights into the hydrological processes of these environments, it offers guidance for adapting to climate change impacts.
Global warming-induced abiotic stresses, such as waterlogging, significantly threaten crop yields. Increased rainfall intensity in recent years has exacerbated waterlogging severity, especially in lowlands and heavy soils. Its intensity is projected to increase by 14-35% in the future, posing a serious risk to crop production and the achievement of sustainable development goals. Soybean, a major global commercial crop cultivated across diverse climates, is highly sensitive to waterlogging, with yield losses of up to 83% due to impaired root morphology and growth. Therefore, understanding the stage-specific response of soybean to varying intensities of waterlogging under different climate regimes is crucial to mitigate the impact of climate change. This study evaluated two climate regimes (Summer: C-S and Rainy: C-R), four growth stages (S-15: 15 days after emergence, S-30, S-45, and S-60), and five waterlogging durations (D-2: 2 days, D-4, D-6, D-8, and D-10) using a randomized complete block design (RCBD) with seven replications in 2023. Results revealed that waterlogging adversely affected soybean root morphology (reducing root volume by 8.6% and dry weight by 5.3%) and growth (decreasing leaf area by similar to 6% and dry matter by 48.2%), with more severe effects observed during the summer compared to the rainy season. Among growth stages, soybean was most sensitive at S-45, showing greater reductions in growth attributes and seed yield (similar to 64.9%) across climate regimes. Prolonged waterlogging (2-10 days) had a pronounced negative impact on root and shoot parameters, resulting in yield reductions of 25.4-47.8% during summer and 47.0-68.2% during the rainy season, compared to the control. Yield stability was highest at D-2 (yield stability index: 0.53) with minimal yield reductions, while D-10 caused the greatest yield loss (similar to 58%). Interestingly, the summer climate regime, characterized by bright sunshine hours and higher temperatures, supported better post-stress recovery, leading to higher grain yields. In conclusion, waterlogging during C-R x S-45 x D-10 caused the most substantial yield reduction (similar to 91%).
Alpine meadows are vital ecosystems on the Qinghai-Tibet Plateau, significantly contributing to water conservation and climate regulation. This study examines the energy flux patterns and their driving factors in the alpine meadows of the Qilian Mountains, focusing on how the meteorological variables of net radiation (Rn), air temperature, vapor pressure deficit (VPD), wind speed (U), and soil water content (SWC) influence sensible heat flux (H) and latent heat flux (LE). Using the Bowen ratio energy balance method, we monitored energy changes during the growing and non-growing seasons from 2022 to 2023. The annual average daily Rn was 85.29 W m-2, with H, LE, and G accounting for 0.56, 0.71, and -0.32 of Rn, respectively. Results show that Rn is the main driver of both H and LE, highlighting its crucial role in turbulent flux variations. Additionally, a negative correlation was found between air temperature and H, suggesting that high temperatures may suppress H. A significant positive correlation was observed between soil moisture and LE, further indicating that moist soil conditions enhance LE. In conclusion, this study demonstrates the impact of climate change on energy distribution in alpine meadows and calls for further research on the ecosystem's dynamic responses to changing climate conditions.
Urban greenspaces face significant anthropogenic transformation, impacting soil ecosystems, multifunctionality, and global biodiversity. With increasing population and urbanization, understanding the drivers influencing soil nematode communities in urban greenspaces is crucial for sustainable urban ecosystem management. We chose the campus of The Ohio State University (OSU) due to its unique urban settings with minimally disturbed both turf and non-turf ecosystems. This study focuses on nematodes, the often-overlooked ecological engineers which play diverse roles in ecosystem functions. Nematodes were collected from 99 sampling locations across three soil depths to represent two ecosystem types (i.e., turf and non-turf) of the OSU campus. Among plant parasitic nematodes (PPN), Helicotylenchus and Pratylenchus populations were above damage threshold limits. No specific pattern of community composition was observed in the spatial variation map. The presence of rare PPN genera in the lower soil layers had a significant impact on beta diversity. Trophic group abundances displayed distinct patterns, with turf ecosystems exhibiting higher PPN as well as total nematode abundance decreasing with soil depths. In the subsurface layer (10-30 cm), both bacterivores and fungivores were higher in the non-turf than turf ecosystem. Fungal-dominated decomposition of organic matter was observed in both ecosystem types. Soil physiochemical properties, specifically, total organic carbon and soil texture, had a significant impact on PPN community composition. However, nematode trophic group composition was more altered by ecosystem type than edaphic factors followed by soil depths. Together these three explanatory variables explained 27.5 % of the total variance in trophic group composition. Overall, this study provides insights into the complex interactions between PPN, trophic groups, soil properties, and urban ecosystem characteristics, contributing valuable knowledge for sustainable urban greenspace management.
Background and aimsA better understanding of plant carbon assimilation, water status and photosystem performance responses to combined heat and drought stress would help to optimize grapevine management under such limiting conditions.MethodsGas exchange and chlorophyll fluorescence parameters were measured in potted grapevines, cv Sauvignon Blanc, before, during and after simulated six-day heat (Tmax = 40 degrees C) wave using heated well-watered (HW), heated drought-stressed (HD), non-heated well-watered (CW) and non-heated dry (CD) vines.ResultsPhotosynthesis and stomatal conductance in HW vines increased during the morning and dropped in the afternoon with respect to CW vines. Daily plant transpiration in HW almost doubled that of CW vines. When grapevines were already exposed to drought, the effects of the heat wave were negligible, with HD plants showing similar leaf photosynthesis and transpiration to their CD counterparts. Heat, but not drought stress, decreased the maximum (Fv/Fm) and effective photochemical quantum yield of PSII (phi PSII), and also affected the use of absorbed energy. HW plants dissipated more radiative energy as heat, a protective mechanism of the photosystem, while HD vines increased the energy dissipated by non-regulated non-photochemical pathways, which might lead to photoinhibition damages. The different behavior could be due to the enhanced transpiration rate and consequent decrease in leaf temperature in HW as compared to HD vines. After the heat wave, only HW vines recovered the afternoon values of photosynthesis, stomatal conductance and phi PSII to similar levels as those in CW vines.ConclusionDrought had a more significant effect than heat stress on photosynthesis, stomatal conductance and transpiration. The combined heat and drought stress, however, increased the proportion of energy lost by the leaves through harmful non-regulated dissipative pathways. With adequate soil water availability, grapevines withstood the heat wave period through an increase in leaf transpiration, which decreased leaf temperature and protected the PSII from heat damage. Drought had a stronger impact on gas exchange parameters than elevated temperature during a simulated heatwave, while heat stress was the main driver of PSII functionality and absorbed energy partitioning. Well-watered grapevines were able to recover their physiological function after a six-day heatwave (Tmax 40 degrees C), while plants under heat and drought stress were unable to resume PSII performance after one day of recovery.
Accurate source apportionment of volatile organic compounds (VOCs) in soil nearby petrochemical industries prevailing globally, is critical for preventing pollution. However, in the process, seasonal effect on contamination pathways and accumulation of soil VOCs is often neglected. Herein, Yanshan Refining-Chemical Integration Park, including a carpet, refining, synthetic rubber, and two synthetic resin zones, was selected for traceability. Season variations resulted in a gradual decrease of 31 VOCs in soil from winter to summer. A method of dry deposition resistance model coupling partitioning coefficient model was created, revealing that dry deposition by gas phase was the primary pathway for VOCs to enter soil in winter and spring, with 100 times higher flux than by particle phase. Source profiles for five zones were built by gas sampling with distinct substance indicators screened, which were used for positive matrix factorization factors determination. Contributions of the five zones were 14.9%, 20.8%, 13.6%, 22.1%, and 28.6% in winter and 33.4%, 12.5%, 10.7%, 24.9%, and 18.5% in spring, respectively. The variation in the soil sorption capacity of VOCs causes inter-seasonal differences in contribution. The better correlation between dry deposition capacity and soil storage of VOCs made root mean square and mean absolute errors decrease averagely by 8.8% and 5.5% in winter compared to spring. This study provides new perspectives and methods for the source apportionment of soil VOCs contamination in industrial sites.(c) 2023 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
It is believed that the Moon formed following collision of a large planetesimal with the early Earth. Over the similar to 4 Gyr since this event the Moon has been considerably less processed by geological activity than the Earth, and may provide a better record of processes and conditions in the early Earth-Moon system. There have been many studies of magmatic volatiles such as H, F, Cl, S and C in lunar materials. However, our ability to interpret variable volatile contents in the lunar sample suite is dependent on our understanding of volatile behaviour in lunar systems. This is currently constrained by limited experimental data. Here, we present the first experimental mineral-melt partitioning coefficients for F, Cl and H2O in a model lunar system under appropriately reduced conditions (log fO(2) to IW-2.1, i.e. oxygen fugacity down to 2.1 log units below the Fe-FeO buffer). Data are consistent with structural incorporation of F, Cl and OH - in silicate melt, olivine and pyroxene under conditions of the lunar mantle. Oxygen fugacity has a limited effect on H2O speciation, and partitioning of H2O, F and Cl is instead largely dependent on mineral chemistry and melt structure. Partition coefficients are broadly consistent with a mantle source region for lunar volcanic products that is significantly depleted in F, Cl and H2O, and depleted in Cl relative to F and H2O, compared to the terrestrial mantle. Partitioning data are also used to model volatile redistribution during lunar magma ocean (LMO) crystallisation. The volatile content of lunar mantle cumulates is dependent upon proportion of trapped liquid during LMO solidification. However, differences in mineral-melt partitioning during LMO solidification can result in significant enrichment on F relative to Cl, and F relative to H2O, in cumulate phases relative to original LMO composition. As such, Cl depletion in lunar volcanic products may in part be a result of LMO solidification. Crown Copyright (C) 2020 Published by Elsevier Ltd. All rights reserved.
We re-examine the conditions at which core formation in the Moon may have occurred by linking the observed lunar mantle depletions of 15 siderophile elements, including volatile siderophile elements (VSE) to predictive equations derived from a database compilation of metal-silicate partition coefficients obtained at lunar-relevant pressure-temperature-oxygen fugacity (P-T-fO(2)) conditions. Our results suggest that at mantle temperatures between the solidus and liquidus the depletions for all elements considered can be satisfied, but only if the Moon was essentially fully molten at the time of core formation while assuming a S-rich (>8 wt%) core comprising 2.5 wt% of the mass of the Moon. However, we observe that at temperatures exceeding the mantle liquidus, with increasing temperature the core S content required to satisfy the element depletions is reduced. As a S-poor core is likely from recent lunar mantle estimates of S abundance, this suggests much higher temperatures during lunar core formation than previously proposed. We conclude that the VSE depletions in the lunar mantle can be solely explained by core formation depletion, suggesting that no significant devolatilization has occurred in later periods of lunar evolution. This is in agreement with the discovery of significant amounts of other volatiles in the lunar interior, but hard to reconcile with current lunar formation models. (C) 2016 Elsevier B.V. All rights reserved.