共检索到 2

The rapid movement and extensive displacement of gravel-silty clay landslides result in significant property damage and loss. Following the destabilization of the Shaziba landslide in Enshi City, it transformed into a debris flow, ultimately obstructing the Qingjiang River and creating a barrier dam. This study delves into the failure mechanism, leap dynamics, and motion processes of this specific landslide by employing a blend of ring shear testing and the discrete element method. Initially, the residual shear strength of the sliding soil was assessed through ring shear tests conducted under various coaxial stresses and shear rates within the sliding region, using field surveys and aerial imagery. Building upon this foundation, the entire progression of the landslide-from sliding to settlement-was replicated using PFC3D, allowing for an examination of the landslide's movement characteristics such as speed, displacement, and trajectory. The findings indicate that the shear displacement and residual friction coefficients are higher at elevated shear rates compared to lower rates. The landslide commences with an initial acceleration phase, with the silty clay material's movement lasting approximately 757 s, reaching a maximum velocity of 32.5 m/s and a displacement exceeding 1000 m. The simulated settlement volume of the landslide (9.31 x 105m3) closely aligns with the results obtained from field investigations (1.5 x 106m3). This research offers comprehensive insights into recent Shaziba landslides, serving as a valuable resource for enhancing our understanding of the dynamics involved and mitigating the potential risks associated with such events.

期刊论文 2024-12-01 DOI: 10.1007/s10064-024-03983-5 ISSN: 1435-9529

From a practical point of view, grain structure heterogeneities are key parameters that control the rock response and still remains a challenge to incorporate in a quantitative manner. One of the less discussed topics in the context of the grain-based model (GBM) in the particle flow code (PFC) is the contact heterogeneities and the appropriate contact model to mimic the grain boundary behavior. Generally, the smooth joint (SJ) model and linear parallel bond (LPB) model are used to simulate the grain boundary behavior. However, the literature does not document the suitability of different models for specific problems. Another challenge in implementing GBM in PFC is that only a single bonding parameter is used at the grain boundaries. The aim of this study is to investigate the responses of a laboratory-scale specimen with SJ and LPB models, considering grain boundary heterogeneous and homogeneous contact parameters. Uniaxial and biaxial compression tests are performed to calibrate the response of Creighton granite. The stress-strain curves, volumetric dilation, inter-crack (crack in the grain boundary), and intra-crack (crack within the grain) development, and failure patterns associated with different contact models are examined. It was found that both the SJ and LPB models can reproduce the pre-peak behavior observed for a granitic rock type. However, the LPB model is unable to reproduce the post-peak behavior. Due to the large interlocking effect originating from the balls in contact and the ball size in the LPB model, local dilation is induced at the grain boundaries. This overestimates the volumetric dilation and residual shear strength. The LPB model tends to result in discontinuous inter-cracks and stress localization in the rock specimen, resulting in fine fragments at the rock surface during failure. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

期刊论文 2024-07-01 DOI: 10.1016/j.jrmge.2023.11.018 ISSN: 1674-7755
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页