Shallow cut-and-cover underground structures, such as subway stations, are traditionally designed as rigid boxes (moment-resisting connections between the main structural members), seeking internal hyperstaticity and high lateral (transverse) stiffness to achieve important seismic capacity. However, since seismic ground motions impose racking drifts, this proved rather prejudicial, with great structural damage and little resilience. Therefore, two previous papers proposed an opposite strategy seeking low lateral (transverse) stiffness by connecting the structural elements flexibly (hinging and sliding). Under severe seismic inputs, these structures would accommodate racking without significant damage; this behaviour is highly resilient. The seismic resilience of this solution was numerically demonstrated in the well-known Daikai station (Kobe, Japan) and a station located in Chengdu (China). This paper is a continuation of these studies; it aims to extend, deepen, and ground this conclusion by performing a numerical parametric study on these two stations in a wide and representative set of situations characterised by the soil type, overburden depth, engineering bedrock position, and high- and lowlateral-stiffness of the stations. The performance indices are the racking displacement and the structural damage (quantified through concrete damage variables). The findings of this study validate the previous remarks and provide new insights.
Assessment of seismic deformations of geosynthetic reinforced soil (GRS) walls in literature has dealt with unsolved challenges, encompassing time-consuming analyses, lack of probabilistic-based analyses, ignored inherent uncertainties of seismic loadings and limited investigated scenarios of these structures, especially for tall walls. Hence, a novel multiple analysis method has been proposed, founded on over 257,400 machine learning simulations (trained with 1582 finite element method analyses) and numerous performance-based fragility curves, to promptly evaluate the seismic vulnerability. The conducted probabilistic parametric study revealed that simultaneously considering several intensity measures for fragility curves is inevitable, preventing engineering judgement bias (up to 52% discrepancies in damage possibilities). Up to 75% contrasts between failure possibilities of 8 and 20 m walls, especially under earthquakes with common intensities (e.g. PGA <= 0.3g), raised serious concerns in the application of height-independent designing methods of GRS walls (e.g. AASHTO Simplified Method). Decreases in deformation possibilities were nearly the same due to increasing reinforcement stiffness (J) (1000 to 2000 kN/m) and reinforcement length to wall height ratio (L/H) (0.8 to 1.5); a decisive superiority of J variations over increasing L/H, as a remedial plan. The proposed methodology privileges engineers to swiftly assess the seismic deformations of multiple GRS walls at the design stage.
This study delves into the parametric optimalization of cement-based stabilized soft clays (CBSC) combined vacuum-assisted filtration (VAF) technique on for engineering applications, focusing on the influence of the retarder, calcium source and intermittent time etc. Key findings include VAF benefiting CBSC's strength for water discharge from the paste, where the UCS of CBSC treated with VAF can increase more than ten times higher than the untreated samples (e.g., 767 kPa versus 60 kPa). The added retarders extend the initial setting time, thus facilitating the removal of excessive water, that the 0.2 % addition of calcium lignosulfonate causes 6.5 % increment of dewatering mass. Especially, calcium lignosulfonate, working as a versatile agent of imparting significant improvements in the rheological properties of cement mixtures and augmenting the structural integrity of clayey soils, was found to significantly enhance the VAF efficiency and the UCS, of which 28-day's UCS further increases comparing to referential group after VAF. The study also reveals that calcium sources, such as desulfurized ash and lime, are also vital in replenishing calcium ions lost during VAF and maintaining a strong alkaline environment, significantly contributing to the strength enhancement. Additionally, the intermittent timing is also critical to the filtration efficiency, where the intermittent time was recommended within two hours post-mixing. These findings offer valuable insights for the practical application of CBSC by the VAF assistance, particularly involving soft clays with high water content.
Most forest roads are unpaved, connecting rural and forest areas and enabling access for firefighting and commercial purposes. Low traffic levels lead to reduced functional demands, while rapid development of deformations results in frequent maintenance. Using geocells as reinforcements reduces deformations, minimizing maintenance needs. Herein, geocell-reinforced soil design methods were collected and categorized based on their result: increase in confining pressure; bearing capacity; height of the base layer. The goal was to compare methods reported in the literature, from a user perspective and within each category, using a base scenario. The methods were analysed to better understand their differences and application conditions. Methods that estimate the increase in confining pressure refer to static or cyclic loading, leading to results that are not directly comparable; often, the reinforcement contribution is represented by an apparent cohesion, with no physical meaning and misleading. Methods that estimate the increase in bearing capacity due to geocell consider its contribution differently (lateral resistance, vertical stress dispersion, and membrane effects) and distinct combinations. For geocell reinforcement, the membrane effect can be neglected. Methods that estimate the height of the base layer can be used directly for an expedite design of unpaved roads. When geocell reinforcement is adopted, the minimum height of the base layer should coincide with that of the geocell. Thus, while current methods contribute and support the design of unpaved roads, further work is essential to develop methods that are of simple and of expedite application for forest engineers, adaptable to local conditions and requirements.
PurposeWave barriers like trenches and piles are used as an anti-vibration system, to reduce the harmful damages caused by heavy traffic or earthquakes. From this point, many studies are developed to investigate the attenuation efficiency of periodic wave barriers using either the theory of the periodic structure according to the concept of the band gap, or laboratory scale study and numerical modeling like the boundary element or finite element method. Infact, in this article, we compare the periodic trench and the periodic pile barrier in terms of reducing vibration induced by earthquakes.MethodsFirst, we developed a 3D finite element method which is validated by comparing it with some related studies. Second, we carried out a parametric study to evaluate the impact of mechanical parameters and geometrical ones on the attenuation effectiveness of two periodic structures.Results and ConclusionNumerical results show that the physical parameters of soil, depth, and spacing improve the attenuation capability of periodic trenches and periodic piles. Furthermore, periodic trenches outperform periodic pile barriers in the isolation of ground vibration in both directions the vertical and the transverse.
This study investigates the coupled soil deformation and pore fluid flow in saturated clay around a cylindrical excavation, utilizing finite element analysis and Modified Cam-Clay constitutive law. Validation of the numerical model precedes a parametric study, assessing volume change effects and various parameters on wall and ground deformations, stresses, pore water pressures, and hydraulic gradients. Results underscore the significance of soil parameters, particularly the Kappa value (kappa) influencing horizontal displacements and hydraulic properties impacting settlements and basement heave. Retaining wall length minimally affects stresses but crucially influences water flow from the excavation base. Wall thickness significantly reduces horizontal displacements, with added ground settlement benefits, while constructing a bottom deck substantially mitigates settlements and displacements. This thorough analysis advances understanding of soil-structure interactions, offering vital insights for engineering practices concerning cylindrical excavations in soft soil conditions.