共检索到 3

Particle Size Distribution (PSD) exerts a substantial influence on the mechanical properties of geological materials such as rocks and soils, which can be viewed at a microscale as an assembly of discrete particles. An exploration into the effects of particle gradation on the properties of these materials provides valuable insights into their nature. In the study, the Discrete Element Method (DEM) was used to conduct numerical shear tests on eight distinct groups of slip zone soil, each characterized by a different particle gradation. The aim was to examine the meso-mechanical properties and shear evolution laws of slip zone soil numerical samples with both optimal and sub-optimal PSDs. Findings underscore the pivotal role that PSD plays in various aspects, including dilatancy, the evolution of the displacement field, the network of contact force chains, the principal stress, and the distribution of normal and tangential contact forces within the slip zone soil. It was observed that the network of contact force chains in the numerical samples with an optimal PSD was more complex than in those samples with a sub-optimal PSD. Additionally, the distribution of principal stresses before and after shear was more uniformly balanced. This particle size-based study offers significant reference value for future investigations into the impact of PSD on the macroscopic and meso-mechanical properties of slip zone soil. By augmenting this knowledge, a more comprehensive understanding of the fundamental behavior of these materials can be attained, leading to improved prediction and management of geological risks.

期刊论文 2025-04-03 DOI: 10.1080/15376494.2024.2364070 ISSN: 1537-6494

In recent decades, rapid urbanization has generated a large amount of waste soft soil and construction debris, resulting in severe environmental pollution and posing significant challenges to engineering construction. To address this issue, this study explores an innovative approach that synergistically applies recycled fine aggregate (RFA) and soil stabilizers to improve the mechanical properties of soft soil. Through laboratory experiments, the study systematically examines the effects of different mixing ratios of RFA (20%, 40%, 60%) and soil stabilizers (10%, 15%, 20%) with red clay. After standard curing, the samples underwent water immersion maintenance for varying durations (1, 5, 20, and 40 days). Unconfined compressive strength (UCS) tests were conducted to evaluate the mechanical performance of the samples, and the mechanisms were further analyzed using scanning electron microscopy (SEM) and particle size distribution (PSD) analysis. The results indicate that the optimal performance is achieved with 20% RFA and 20% stabilizer, reaching the highest UCS value after 40 days of water immersion. This improvement is primarily attributed to the formation of a dense reticulated structure, where RFA particles are effectively encapsulated by clay particles and stabilized by hydration products from the stabilizer, forming a robust structural system. Unconsolidated undrained (UU) tests reveal that peak deviatoric stress increases with confining pressure and stabilizer content but decreases when excessive RFA is added. Shear strength parameter analysis demonstrates that both the internal friction angle (phi) and cohesion (c) are closely related to the content ratios, with the best performance observed at 20% stabilizer and 20% RFA. PSD analysis further confirms that increasing stabilizer content enhances particle aggregation, while SEM observations visually illustrate a denser microstructure. These findings provide a feasible solution for waste soft soil treatment and resource utilization of construction debris, as well as critical technical support and theoretical guidance for geotechnical engineering practices in high-moisture environments.

期刊论文 2025-02-01 DOI: 10.3390/app15031270

In the context of efforts aimed at reducing carbon emissions, the utilization of recycled aggregate soil mixes for soil stabilization has garnered considerable interest. This study examines the mechanical properties of mixed soil samples, varying by dosage of a soft soil curing agent C, recycled aggregate R content, and curing duration. Mechanical evaluations were conducted using unconfined compressive strength tests (UCS), field emission scanning electron microscopy (FESEM), and laser diffraction particle size meter tests (PSD). The results indicate that the strength of the mixed soil samples first increases and then decreases with higher dosages of recycled aggregate, reaching optimal strength at a 20% dosage. Similarly, an increase in curing agent dosage enhances the strength, peaking at 20%. The maximum strength of the mixed soils is achieved at 28 days under various proportions. The introduction of the curing agent leads to the formation of a flocculent structure, as observed in FESEM, which contributes to the enhanced strength of the soil mixes. Specimens prepared with a combination of 20% R and 20% C, maintained at a constant moisture content of 20%, and cured for 28 days exhibit a balance between economic, environmental, and engineering performance.

期刊论文 2024-09-01 DOI: 10.3390/ma17184448
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页