共检索到 253

Liquefaction hazard analysis is crucial in earthquake-prone regions as it magnifies structural damage. In this study, standard penetration test (SPT) and shear wave velocity (Vs) data of Chittagong City have been used to assess the liquefaction resistance of soils using artificial neural network (ANN). For a scenario of 7.5 magnitude (Mw) earthquake in Chittagong City, estimating the liquefaction-resistance involves utilizing peak horizontal ground acceleration (PGA) values of 0.15 and 0.28 g. Then, liquefaction potential index (LPI) is determined to assess the severity of liquefaction. In most boreholes, the LPI values are generally higher, with slightly elevated values in SPT data compared to Vs data. The current study suggests that the Valley Alluvium, Beach and Dune Sand may experience extreme liquefaction with LPI values ranges from 9.55 to 55.03 and 0 to 37.17 for SPT and Vs respectively, under a PGA of 0.15 g. Furthermore, LPI values ranges from 25.55 to 71.45 and 9.55 to 54.39 for SPT and Vs correspondingly. The liquefaction hazard map can be utilized to protect public safety, infrastructure, and to create a more resilient Chittagong City.

期刊论文 2025-12-31 DOI: 10.1080/19475705.2025.2451126 ISSN: 1947-5705

Land surface temperature (LST) plays an important role in Earth energy balance and water/carbon cycle processes and is recognized as an Essential Climate Variable (ECV) and an Essential Agricultural Variable (EAV). LST products that are issued from satellite observations mostly depict landscape-scale temperature due to their generally large footprint. This means that a pixel-based temperature integrates over various components, whereas temperature individual components are better suited for the purpose of evapotranspiration estimation, crop growth assessment, drought monitoring, etc. Thus, disentangling soil and vegetation temperatures is a real matter of concern. Moreover, most satellite-based LSTs are contaminated by directional effects due to the inherent anisotropy properties of most terrestrial targets. The characteristics of directional effects are closely linked to the properties of the target and controlled by the view and solar geometry. A singular angular signature is obtained in the hotspot geometry, i.e., when the sun, the satellite and the target are aligned. The hotspot phenomenon highlights the temperature differences between sunlit and shaded areas. However, due to the lack of adequate multi-angle observations and inaccurate portrayal or neglect of solar influence, the hotspot effect is often overlooked and has become a barrier for better inversion results at satellite scale. Therefore, hotspot effect needs to be better characterized, which here is achieved with a three-component model that distinguishes vegetation, sunlit and shaded soil temperature components and accounts for vegetation structure. Our work combines thermal infrared (TIR) observations from the Sea and Land Surface Temperature Radiometer (SLSTR) onboard the LEO (Low Earth Orbit) Sentinel-3, and two sensors onboard GEO (geostationary) satellites, i.e. the Advanced Himawari Imager (AHI) and Spinning Enhanced Visible and Infrared Imager (SEVIRI). Based on inversion with a Bayesian method and prior information associated with component temperature differences as constrained, the findings include: 1) Satellite observations throughout East Asia around noon indicate that for every 10 degrees change in angular distance from the sun, LST will on average vary by 0.6 K; 2) As a better constraint, the hotspot effect can benefit from multi-angle TIR observations to improve the retrieval of LST components, thereby reducing the root mean squared error (RMSE) from approximately 3.5 K, 5.8 K, and 4.1 K to 2.8 K, 3.5 K, and 3.1 K, at DM, EVO and KAL sites, respectively; 3) Based on a dataset simulated with a threedimensional radiative transfer model, a significant inversion error may result if the hotspot is ignored for an angular distance between the viewing and solar directions that is smaller than 30 degrees. Overall, considering the hotspot effect has the potential to reduce inversion noise and to separate the temperature difference between sunlit and shaded areas in a pixel, paving the way for producing stable temperature component products.

期刊论文 2025-08-15 DOI: 10.1016/j.rse.2025.114794 ISSN: 0034-4257

The time-dependent behaviour of soft and clayey soils treated with Deep Cement Mixing (DCM) columns is important for analyzing the long-term performance of civil engineering infrastructures. Previous studies on DCMinstalled composite soil (CS) have primarily focused on examining the soil strength and stiffness characteristics. The limited focus on the time-dependent settlement and stress-strain distribution of CS underscores the need for a more comprehensive understanding of this complex phenomenon. In this study, a lab-scale physical ground model is designed and developed to investigate the time-dependent settlement profile of the composite Montmorillonitic Clay soil (MMC). The settlement behaviour of the ground model is assessed using Creep Hypothesis B and the results are further validated with the Power Law Model. Additionally, a FEM-based numerical simulation is performed to examine the time-dependent settlement and the stress distribution between the column and surrounding clay soil at different depths. The results from the physical model test show that the time-dependent parameter of the ground model (i.e., DCM column installed in MMC) is proportionate to the loading rate until the failure of the DCM column is reached. However, the time-dependent parameter was found to be decreased by 59.04 % in the post-failure phase of the DCM column. This reduction indicates that the DCM column was the primary load-bearing component before its failure. The numerical study shows that the pore water pressure dissipation in the clay soil and DCM column interface was similar at various depths. The top and bottom sections of the DCM column possess higher stress levels, which demonstrates its susceptibility for failure in the DCM column.

期刊论文 2025-07-15 DOI: 10.1016/j.oceaneng.2025.121451 ISSN: 0029-8018

Solidified soil (SS) is widely applied for resource utilization of excavated soil (ES), however the waste solidified soil (WSS) may pose environmental hazards in future because of its high pH (>10). WSS is unsuitable for landfill but can be raw materials for preparing recycled solidified soil (RSS) with better mechanical properties than SS. This investigation used OPC and alkali-activated slag (AAS) as binders to solidify ES and WSS and prepare RSS. The mechanical properties of RSS were experimentally verified to be better than SS, increased by over 76 %. The mechanism is that the clay particles in WSS have been solidified to form sand-like particles or adhere to natural sand, resulting in increasing content of sand-sized particles, and the residual clay particles undergo cation exchange under the high pH and Ca2 + content, resulting in a decrease in zeta potential, reducing diffusion layer thickness. As a result, the flowability of RSS increases under the same liquid to solid ratio. The residual unreacted binder particles and high pH in WSS are beneficial for the early and final compressive strength increase of RSS, which allows preparing RSS with lower cost and carbon emission. Finally, the utilization of WSS has significant environmental benefits.

期刊论文 2025-07-11 DOI: 10.1016/j.conbuildmat.2025.141597 ISSN: 0950-0618

Evaluating the stability of coral islands and reefs in dynamic marine environments, such as waves, tsunamis, storm surges, and earthquakes, is a critical scientific issue in the field of marine geotechnical engineering. Nansha coral sand was used as the study object, and stress-controlled drained and undrained cyclic-loading tests were conducted. The undrained excess pore-water pressure and the drained cumulative volumetric strain of saturated coral sand were determined at various non-plastic fine contents (FC), relative density (D-r), and cyclic stress ratio (CSR). The results indicated that cumulative volumetric strain (epsilon(vp)) developed in coral sand via two modes: cyclic stabilisation and cyclic creep. Analyses revealed that when the potential damage coefficient (DP) x CSR 0.05, epsilon(vp) transitioned into the cyclic creep mode. Utilising cumulative dissipation energy as a linking factor showed an arctangent function relationship between the excess pore water pressure ratio (R-u) and epsilon(vp) values of saturated coral sand with different FC, D-r, and CSR. This relationship was applicable to both stress- and strain-controlled cyclic-loading tests. Parameters m and n of the R-u-epsilon(vp) function model increased with an increasing CSR. Additionally, an increase in the D-r or FC resulted in a decrease in m and an increase in n. Multiple regression analysis further revealed that model parameters corrected for compactness and cyclic stress levels exhibited distinct trends as the void ratio (e) increased. Specifically, CSR alpha x m(D)(R) decreased, and CSR1-alpha x n(D)(R) increased. Both parameters displayed a single power function relationship with e. Based on these findings, a coupled incremental model for the cyclic pore pressure and volumetric strain of saturated coral sand, based on energy conversion, was developed.

期刊论文 2025-07-01 DOI: 10.1016/j.apor.2025.104631 ISSN: 0141-1187

Although silicon nutrition in crops has been reported to improve growth and herbicide tolerance, the response of crop-associated weeds has not been studied. To support or reject the hypothesis that silicon nutrition can affect the tolerance of velvetleaf to pyrithiobac-sodium, affecting crop-weed competition, this study was conducted as a dose-response study in which cotton and velvetleaf grown in soil with or without K2SiO3 + silicate-solubilizing bacteria (SSB) were sprayed with pyrithiobac-sodium. Some enzymes involved in lignin biosynthesis, antioxidant, and herbicide metabolism were measured to find physiological changes. The findings accept the hypothesis above for the first time. Silicon nutrition could disrupt pyrithiobac-sodium selectivity for controlling velvetleaf in cotton. Regardless of treatments, velvetleaf accumulated more silicon and lignin than cotton. Unlike phenylalanine ammonia-lyase, the activity of cytochrome P450 reductase (1.3 vs. 0.7 U/g), glutathione S-transferase (1.7 vs. 1.2 U/g), superoxide dismutase (21.7 vs. 12.5 U/mg), and catalase (443.9 vs. 342.5 U/mg) was higher in cotton than in velvetleaf, grown in soil without silicon nutrition. All enzymes became more active with silicon nutrition, but the increase was higher in velvetleaf. In field studies, velvetleaf benefited from silicon nutrition more than cotton, enhancing the competitive ability of velvetleaf in cotton and reducing further crop yield. K2SiO3 + SSB caused a 29.7 % increase in velvetleaf biomass, which caused the greatest damage to cotton seed (80.9 %) and lint (69.2 %) yields. It is recommended to avoid soil nutrition with K2SiO3 + SSB in velvetleafinfested cotton fields, where velvetleaf control with pyrithiobac-sodium is intended.

期刊论文 2025-07-01 DOI: 10.1016/j.plaphy.2025.109924 ISSN: 0981-9428

This study investigates the physicochemical properties of Soil-Like Material (SLM) recovered from aged Municipal Solid Waste (MSW) dumps in Anantapur, Andhra Pradesh, India, and assesses its potential for reuse. The SLM, which constitutes 68%-75% of the excavated waste, was analyzed for key parameters including total dissolved solids (TDS), chemical oxygen demand (COD), electrical conductivity (EC), and heavy metal concentrations. Results revealed that the organic content of SLM ranged from 6% to 20%, significantly higher than that of local soils (1.5%). The leachate produced from SLM showed elevated levels of TDS (500-1,200 mg l-1), COD (150-270 mg l-1), and heavy metals such as copper (Cu), lead (Pb), chromium (Cr), and zinc (Zn). Cu and Pb concentrations were found to be 27 and 26 times higher than those in local soil extracts, posing substantial risks to groundwater and soil quality. Other metals, including nickel (Ni), arsenic (As), and cadmium (Cd), also exceeded permissible limits. These findings suggest that while SLM has potential for reuse, its high contamination levels require treatment methods such as soil washing, heating, or stabilization with additives like lime or fly ash to reduce environmental risks. Without proper treatment, the direct use of SLM could result in substantial ecological damage. The study highlights the importance of sustainable landfill site rehabilitation and the development of safe strategies for the reuse of SLM to mitigate potential environmental impacts.

期刊论文 2025-06-30 DOI: 10.1088/2631-8695/add78e ISSN: 2631-8695

Dollar spot, caused by Clarireedia jacksonii, is a chronic fungal disease of creeping bentgrass in cool, humid environments in the United States. In closely mown golf playing surfaces, symptoms include small, circular, sunken spots of blighted turf that eventually coalesce if left untreated. This report evaluates the efficacy of preventative fungicide programs to suppress dollar spot in golf greens. Programs contained broad spectrum fungicides mixed with Appear II, a systemic potassium phosphite fungicide that is formulated with a green pigment. A study was conducted on an 'L-93' plus 'Providence' creeping bentgrass (Agrostis stolonifera) push-up constructed nursery green originally seeded in 2000 at the North Shore Country Club in Glenview, IL. Results indicated fungicide programs that contained Appear II can provide complete control of dollar spot and can also significantly reduce localized dry spot, an abiotic disorder of turfgrass caused by hydrophobic soils, which commonly occurs in sand-based putting greens.

期刊论文 2025-06-11 DOI: 10.1094/PHP-01-25-0007-PDMR

Structures constructed on collapsible soil are prone to failure under flooding. Agro-waste like rice husk ash (RHA) and its geopolymer (LGR), consisting of lime (L), RHA, water glass (Na2SiO3), and caustic soda (NaOH), present a potential solution to address this issue. RHA and LGR were mixed up to 16% to improve the collapsible soil. Samples were remolded at optimal water content and maximum dry density for strength and collapsible potential tests. Unconfined compressive strength, deformation modulus, and soaked California bearing ratio exhibit exponential improvement with the inclusion of LGR. Additionally, for comparison of microstructural characteristics, analyses involving energy-dispersive X-ray spectroscopy (EDAX) and scanning electron microscope (SEM) were conducted on both virgin and treated specimens. LGR resulted in the emergence of new peaks of sodium silicates and calcium silicates, as indicated by EDAX. The formation of H-C-A-S gel and H-N-A-S gel observed in SEM suggests the development of bonds among soil particles attributed to geopolymerization. SEM reveals the transformation of the inherent collapsible soil from a dispersed and silt-dominated structure to a reticulated structure devoid of micro-pores following the incorporation of LGR. A numerical model was constructed to forecast the performance of both virgin and stabilized collapsible soils under pre- and post-flooding conditions. The outcomes indicate an enhancement in the soil's bearing capacity upon stabilization with 12% LGR. The implementation of 12% LGR significantly resulted in a lower embodied energy-tostrength ratio, emissions-to-strength ratio, and relatively lower cost-to-strength ratio compared to the soil treated with 16% cement kiln dust (CKD). (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

期刊论文 2025-06-01 DOI: 10.1016/j.jrmge.2024.12.022 ISSN: 1674-7755

Paleoliquefaction investigations are crucial for assessing seismic hazard potential and identifying regions susceptible to liquefaction, which is essential for seismic risk-sensitive land-use planning. This research aimed to identify paleoliquefaction sites by reviewing documented descriptions of the damages and ground deformations in Bangladesh during three significant historical earthquakes: the Bengal Earthquake (1885), the Great Assam Earthquake (1897), and the Srimangal Earthquake (1918). A paleoliquefaction map for Bangladesh was generated, locating the paleoliquefaction sites during these three major historical earthquakes. In addition, Standard Penetration Test (SPT) blow count and Down-hole Seismic Tests (DST) were conducted at selected locations to assess the Liquefaction Potential Index (LPI) by using deterministic (simplified) and probabilistic procedures. The results confirmed a high likelihood of liquefaction during future large-magnitude earthquakes. The research outcome will help to distinguish and characterize Bangladesh's susceptible regions to soil liquefaction during potential earthquakes in the future and is recommended for consideration in large-scale construction or development plans.

期刊论文 2025-06-01 DOI: 10.1007/s10064-025-04316-w ISSN: 1435-9529
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共253条,26页