The thermal coupling between the atmosphere and the subsurface on the Qinghai-Tibetan Plateau (QTP) governs permafrost stability, surface energy balance, and ecosystem processes, yet its spatiotemporal dynamics under accelerated warming are poorly understood. This study quantifies soil-atmosphere thermal coupling ((3) at the critical 0.1 m root-zone depth using in-situ data from 99 sites (1980-2020) and a machine learning framework. Results show significantly weaker coupling in permafrost (PF) zones (mean (3 = 0.42) than in seasonal frost (SF) zones (mean (3 = 0.50), confirming the powerful thermal buffering of permafrost. Critically, we find a widespread trend of weakening coupling (decreasing (3) at 66.7 % of sites, a phenomenon most pronounced in SF zones. Our driver analysis reveals that the spatial patterns of (3 are primarily controlled by surface insulation from summer rainfall and soil moisture. The temporal trends, however, are driven by a complex and counter-intuitive interplay. Paradoxically, rapid atmospheric warming is the strongest driver of a strengthening of coupling, likely due to the loss of insulative snow cover, while trends toward wetter conditions drive a weakening of coupling by enhancing surface insulation. Spatially explicit maps derived from our models pinpoint hotspots of accelerated decoupling in the eastern and southern QTP, while also identifying high-elevation PF regions where coupling is strengthening, signaling a loss of protective insulation and increased vulnerability to degradation. These findings highlight a dynamic and non-uniform response of land-atmosphere interactions to climate change, with profound implications for the QTP's cryosphere, hydrology, and ecosystems.
The Himalayan glacier valleys are encountering escalating environmental challenges. One of the contributing factors is thought to be the rising amounts of light-absorbing carbonaceous aerosols, particularly brown carbon (BrC) and black carbon (BC), that are reaching glacier valleys. The present study examines the optical and radiative characteristics of BC at Bhojbasa, near Gaumukh (similar to 3800amsl). Real-time in-situ BC data, optical characteristics, radiative forcing, heating rate, several meteorological parameters, and BC transport pathways to this high-altitude site are investigated. The daily mean concentration of equivalent black carbon (eBC) was 0.28 +/- 0.21 mu g/m(3) over the research period, and the eBC from fossil fuel (BCFF) is dominant with 78 % with a daily mean of 0.22 +/- 0.19 mu g/m(3)(,) and eBC from biomass burning (BCBB) is 22 % with a daily mean of 0.06 +/- 0.08 mu g/m(3). Meteorological data, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) imaging, and backward air-mass trajectory analysis demonstrate the presence of BC particles and their plausible transit pathways from multiple source locations to the pristine Gangotri Glacier Valley. The estimated daily mean BC radiative forcing values are +6.71 +/- 1.80 W/m(2) in the atmosphere, +1.87 +/- 1.16 W/m(2) at the top of the atmosphere, and -4.84 +/- 1.01 W/m(2) at the surface with a corresponding atmospheric heating rate of 0.19 +/- 0.05 K/day. These findings highlight the critical role of ground-based measurements in monitoring the fluctuations of BC over such varied Himalayan terrain, as they offer important information on the localized trends and effects. Long-term measurements of glacier valleys are essential for a comprehensive evaluation of the impact of BC particles on Himalayan ecology and climate.
Lime-activated ground granulated blast furnace slag (GGBS) is usually used to treat gypseous soils. However, sulphate-bearing soils often contain other sulphates, e.g., sodium sulphate (Na2SO4), potassium sulphate (K2SO4) and magnesium sulphate (MgSO4). Therefore, in this study, lime-GGBS was used as a curing agent for stabilising four sulphate-bearing soils, which were named as Na-soil, K-soil, Mg-soil, and Ca-soil. Unconfined compressive strength (UCS), swelling, X-ray diffraction, scanning electron microscopy and inductively coupled plasma spectroscopy tests, were conducted to explore the macro- and micro-properties of the lime-GGBS-stabilised soils. The results showed that at 5000 ppm sulphate, stabilised Mg-soil had the lowest swelling and highest UCS. At 20,000 ppm sulphate, stabilised Ca-soil had the lowest swelling, while stabilised Na-soil had the highest UCS. Generally, increasing sulphate concentration decreased swelling for Ca-soil but increased for other three soils, and decreased UCS for Mg-soil but increased for other three soils. This was because less ettringite was generated in the stabilised Ca-soil and the formation of magnesium silicate hydrate (MSH) in the stabilised Mg-soil. Therefore, the sulphate type had a significant impact on the swelling and strength properties of lime-GGBS-stabilised sulphate-bearing soil. It is essential to identify the sulphate type before stabilising the soil on-site.
The morphology of sheep wool applied as organic fertilizer biodegraded in the soil was examined. The investigations were conducted in natural conditions for unwashed waste wool, which was rejected during sorting and then chopped into short segments and wool pellets. Different types of wool were mixed with soil and buried in experimental plots. The wool samples were periodically taken and analyzed for one year using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). During examinations, the changes in the fibers' morphology were observed. It was stated that cut wool and pellet are mechanically damaged, which significantly accelerates wool biodegradation and quickly destroys the whole fiber structure. On the contrary, for undamaged fibers biodegradation occurs slowly, layer by layer, in a predictable sequence. This finding has practical implications for the use of wool as an organic fertilizer, suggesting that the method of preparation can influence its biodegradation rate. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(SEM)(sic)(sic)(sic)(sic)(sic)X(sic)(sic)(sic)(sic)(EDS)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
The Tibetan Railway has introduced pressures on the fragile grassland ecosystems of the Tibetan Plateau. However, the impact of the railway on the carbon sequestration remains unclear, as existing studies primarily focus on in-situ vegetation observations. In this study, we extracted the start and end of the growing season (SOS, EOS) and maximum daily GPP (GPPmax) along the railway corridor from the satellite-derived Gross Primary Productivity (GPP) data, and quantified the extent and intensity of the railway's disturbance on these indicators. We further employed the Statistical Model of Integrated Phenology and Physiology (SMIPP) to translate these disturbances into annual cumulative GPP (GPPann). Results show that Tibetan Railway significantly influences grassland within 50-meters, causing earlier SOS (0.1086 d m-1), delayed EOS (0.0646 d m-1), and reduced GPPmax (0.0069 gC m-2 d-1 m-1) as the distance to the railway gets closer. The advanced SOS and delayed EOS contributed gains of 28.82 and 104.26 MgC y-1, but reduction in GPPmax accounted for a loss of 2952.79 MgC y-1. Railway-induced phenology-physiology trade-off causes GPPann loss of 2819.71 MgC y-1. This study reveals Tibetan Railway's impact on grassland carbon cycling, offering insights for grassland conservation and sustainable transportation infrastructure projects.
An analytical methodology was developed for the first time in this work enabling the simultaneous enantiomeric separation of the fungicide fenpropidin and its acid metabolite by Capillary Electrophoresis. A dual cyclodextrin system consisting of 4 % (w/v) captisol with 10 mM methyl-beta-cyclodextrin was employed in a 100 mM sodium acetate buffer at pH 4.0. Optimal experimental conditions (temperature 25 degrees C, separation voltage -25 kV, and hydrodynamic injection of 50 mbar x 10 s) allowed the simultaneous separation of the four enantiomers in <10.7 min with resolutions of 3.1 (fenpropidin) and 3.2 (its acid metabolite). Analytical characteristics of the method were evaluated and found adequate for the quantification of both chiral compounds with a linearity range from 0.75 to 70 mg L-1, good accuracy (trueness included 100 % recovery, precision with RSD<6 %), and limits of detection and quantification of 0.25 and 0.75 mg L-1, respectively, for the four enantiomers. No significant differences were found between the concentrations determined and labelled of fenpropidin in a commercial agrochemical formulation. The stability over time (0-42 days) of fenpropidin enantiomers using the commercial agrochemical formulation was evaluated in two sugar beet soils, revealing to be stable at any time in one sample, while in the other a decrease of 45 % was observed after 42 days. Individual and combined toxicity of fenpropidin and its metabolite was determined for the first time for marine organism Vibrio fischeri, demonstrating higher damage caused by parent compound. Synergistics and antagonists' interactions were observed at low and high effects levels of contaminants.
The aerosol scattering phase function (ASPF), a crucial element of aerosol optical properties, is pivotal for radiative forcing calculations and aerosol remote sensing detection. Current detection methods for the ASPF include multi-sensor detection, single-sensor rotational detection and imaging detection. However, these methods face challenges in achieving high-resolution full-angle measurement, particularly for small forward (i.e., less than 10 degrees) or backward (i.e., more than 170 degrees) scattering angles in open path. In this work, a full-angle ASPF detection system based on the multi-field-of-view Scheimpflug lidar technique has been proposed and demonstrated. A 450 nm continuous-wave semiconductor laser was utilized as the light source and four CMOS image sensors were employed as detectors. To detect the full-angle ASPF, four receiving units capture angular scattering signals across different angle ranges, namely 0 degrees-20 degrees, 10 degrees-96 degrees, 84 degrees-170 degrees, 160 degrees-180 degrees, respectively. The influence of the relative illumination and angular response of the used image sensors have been corrected, and a signal stitching algorithm was developed to obtain a complete 0-180 degrees angular scattering signal. Atmospheric measurements have been conducted by employing the full-angle ASPF detection system in open path. The experimental results of the ASPF have been compared with the AERONET data from the Socheongcho station and simulated ASPF based on the typical aerosol models in mainland China, showing excellent agreement. The promising results demonstrated in this work have shown a great potential for detecting the full-angle ASPF in open path.
With global warming and the intensification of human activities, frozen soils continue to melt, leading to the formation of thermokarst collapses and thermokarst lakes. The thawing of permafrost results in the microbial decomposition of large amounts of frozen organic carbon (C), releasing greenhouse gases such as carbon dioxide (CO2) and methane (CH4). However, little research has been done on the thermo-water-vapor-carbon coupling process in permafrost, and the interactions among hydrothermal transport, organic matter decomposition, and CO2 transport processes in permafrost remain unclear. We considered the decomposition and release of organic C and established a coupled thermo-water-vapor-carbon model for permafrost based on the study area located in the Beiluhe region of the Qingzang Plateau, China. The model established accurately reflected changes in permafrost temperature, moisture, and C fluxes. Dramatic changes in temperature and precipitation in the warm season led to significant soil water and heat transport, CO2 transport, and organic matter decomposition. During the cold season, however, the soil froze, which weakened organic matter decomposition and CO2 transport. The sensitivity of soil layers to changes in the external environment varied with depth. Fluctuations in energy, water, and CO2 fluxes were greater in shallow soil layers than in deeper ones. The latent heat of water-vapor and water-ice phase changes played a crucial role in regulating the temperature of frozen soil. The low content of soil organic matter in the study area resulted in a smaller influence of the decomposition heat of soil organic matter on soil temperature, compared to the high organic matter content in other soil types (such as peatlands).
In light of a series of recent fatal landslides in Alaska, we set out to determine 1) the history of Alaskan landslides and 2) if the number of associated fatalities has increased with time. To answer our research questions, we searched a combination of 24 digital newspapers and online media sources, including historic digitized Alaskan newspapers, seeking landslides that affected people and/or infrastructure. This resulted in an inventory of 281 landslides occurring in Alaska since 1883. Our database includes the date on which the landslide occurred, its location and probable trigger, any reported injuries and/or fatalities, other reported damage, and the media source. Our inventory indicates that the number of reported landslides started to increase in the 1980's, and has increased dramatically in recent decades. We correlate the increase in landslides to a 1.2 degrees C to 3.4 degrees C increase in average annual air temperature and a 3% to 27% increase in precipitation over the last 50 years across Alaska. This change in climate is degrading permafrost, increasing the number of annual freeze/thaw events, and contributing to larger and more intense precipitation events - such as atmospheric rivers, all of which increase landslide susceptibility in various parts of the state. Alaska's last four fatal landslides occurred in Southeast Alaska, which has experienced the greatest increase in the number of landslides per capita. Our landslide database can serve as the initial inventory for analyses of landslides related to specific extreme weather events, as well as a resource to determine costs incurred from landslide-related damage.
The development of thermokarst lakes on the Qinghai-Tibetan Plateau (QTP) serves as a prominent indicator of permafrost degradation driven by climate warming and increased humidity. However, quantitative observations of surface change and relationships between lakes and permafrost during thermokarst development remain inadequate. This study utilized long-term terrestrial laser scanning (TLS) to capture high-resolution data on the surface contour changes of the lake in the Beiluhe Basin over 3 years. Between June 2021 and September 2023, the area of BLH-B Lake increased by 19.23% to 6634 m2, with a maximum shoreline retreat distance of 14.37 m. Lake expansion exhibited pronounced seasonal characteristics, closely correlated with temperature and precipitation variations, with the most significant changes occurring during thawing periods. Notably, the lake expanded by up to 505 m2 during extreme rainfall events in the 2022 thawing period, accounting for 47.20% of the total expansion observed over 3 years. Integrated geophysical methods, including electrical resistivity tomography (ERT) and ground-penetrating radar (GPR), revealed substantial permafrost degradation, particularly along the northwestern and western shores, where talik formation occurred within 40 m of the lakeshore. Heat from groundwater flow within the active layer and direct solar radiation contributes to accelerated permafrost degradation around the lake. The integration of TLS with geophysical methods revealed both surface contour changes and subsurface permafrost conditions, providing a comprehensive view of the dynamics of thermokarst lakes. This integrated monitoring approach proves effective for studying thermokarst lake evolution, offering critical quantitative insights into permafrost degradation processes on the QTP and providing essential baselines for climate change impact assessment.